Disruption of the Mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria

被引:45
作者
Christensen, KE [1 ]
Patel, H [1 ]
Kuzmanov, U [1 ]
Mejia, NR [1 ]
MacKenzie, RE [1 ]
机构
[1] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
关键词
D O I
10.1074/jbc.M409380200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Mthfd1 gene encoding the cytoplasmic methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase enzyme (DCS) was inactivated in embryonic stem cells. The null embryonic stem cells were used to generate spontaneously immortalized fibroblast cell lines that exhibit the expected purine auxotrophy. Elimination of these cytoplasmic activities allowed for the accurate assessment of similar activities encoded by other genes in these cells. A low level of 10-formyltetrahydrofolate synthetase was detected and was shown to be localized to mitochondria. However, NADP-dependent methylenetetrahydrofolate dehydrogenase activity was not detected. Northern blot analysis suggests that a recently identified mitochondrial DCS (Prasannan, P., Pike, S., Peng, K., Shane, B., and Appling, D. R. (2003) J. Biol. Chem. 278, 43178-43187) is responsible for the synthetase activity. The lack of NADP-dependent dehydrogenase activity suggests that this RNA may encode a monofunctional synthetase. Moreover, examination of the primary structure of this novel protein revealed mutations in key residues required for dehydrogenase and cyclohydrolase activities. This monofunctional synthetase completes the pathway for the production of formate from formyltetrahydrofolate in the mitochondria in our model of mammalian one-carbon folate metabolism in embryonic and transformed cells.
引用
收藏
页码:7597 / 7602
页数:6
相关论文
共 32 条
[1]   The 3-D structure of a folate-dependent dehydrogenase/cyclohydrolase bifunctional enzyme at 1.5 Å resolution [J].
Allaire, M ;
Li, YG ;
MacKenzie, RE ;
Cygler, M .
STRUCTURE, 1998, 6 (02) :173-182
[2]  
BARLOWE C K, 1988, Biofactors, V1, P171
[3]   Protein motifs .9. The nicotinamide dinucleotide binding motif: A comparison of nucleotide binding proteins [J].
Bellamacina, CR .
FASEB JOURNAL, 1996, 10 (11) :1257-1269
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development [J].
Di Pietro, E ;
Sirois, J ;
Tremblay, ML ;
MacKenzie, RE .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (12) :4158-4166
[6]  
GARROW TA, 1993, J BIOL CHEM, V268, P11910
[7]  
HUM DW, 1988, J BIOL CHEM, V263, P15946
[8]   EXPRESSION OF ACTIVE DOMAINS OF A HUMAN FOLATE-DEPENDENT TRIFUNCTIONAL ENZYME IN ESCHERICHIA-COLI [J].
HUM, DW ;
MACKENZIE, RE .
PROTEIN ENGINEERING, 1991, 4 (04) :493-500
[9]  
Mackenzie R., 1984, FOLATE PTERINS, V1, P255
[10]  
MEJIA NR, 1985, J BIOL CHEM, V260, P4616