Computing the derivative of NURBS with respect to a knot

被引:19
作者
Piegl, LA
Tiller, W
机构
[1] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[2] GenomWare Inc, Tyler, TX 75703 USA
关键词
B-splines; differentiation; symbolic operators;
D O I
10.1016/S0167-8396(98)00028-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Algorithms for computing the derivative of NURBS with respect to a knot are presented. Rational and nonrational curves and surfaces as well as basis functions are differentiated with respect to a knot. The derivative entities are computed by control point or basis function differencing divided by appropriate knot spans. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:925 / 934
页数:10
相关论文
共 11 条
[1]  
BOEHM W, 1984, COMPUTING, V33, P171
[2]  
BUTTERFIELD KR, 1976, J I MATH APPL, V17, P15
[3]  
Cox M. G., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P134
[4]  
de Boor C., 1972, Journal of Approximation Theory, V6, P50, DOI 10.1016/0021-9045(72)90080-9
[5]  
de Boor C., 1978, PRACTICAL GUIDE SPLI, DOI DOI 10.1007/978-1-4612-6333-3
[6]   COMMENTS ON SOME B-SPLINE ALGORITHMS [J].
LEE, ETY .
COMPUTING, 1986, 36 (03) :229-238
[7]   A SIMPLIFIED B-SPLINE COMPUTATION ROUTINE [J].
LEE, ETY .
COMPUTING, 1982, 29 (04) :365-371
[8]  
LEE ETY, 1983, B SPLINE PRIMER
[9]   Symbolic operators for NURBS [J].
Piegl, L ;
Tiller, W .
COMPUTER-AIDED DESIGN, 1997, 29 (05) :361-368
[10]  
Piegl L. A., 1997, MONOGRAPHS VISUAL CO