Iron coordination in photosystem II:: Interaction between bicarbonate and the QB pocket studied by Fourier transform infrared spectroscopy

被引:56
作者
Berthomieu, C [1 ]
Hienerwadel, R [1 ]
机构
[1] CEA Saclay, Sect Bioenerget, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1021/bi002236l
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The non heme iron environment of photosystem II is studied by light-induced infrared spectroscopy. A conclusion of previous work [Hienerwadel, R., and Berthomieu, C. (1995) Biochemistry 34, 16288-16297] is that bicarbonate is a bidendate ligand of the reduced iron and a monodentate ligand in the Fe3+ state. In this work, the effects of bicarbonate replacement with lactate, glycolate, and glyoxylate, and of o-phenanthroline binding are investigated to determine the specific interactions of bicarbonate with the protein. Fe2+/Fe3+ FTIR spectra recorded with C-12- and C-13(1)-labeled lactate indicate that lactate displaces bicarbonate by direct binding to the iron through one carboxylate oxygen and the hydroxyl group in both the Fe2+ and Fe3+ states. This different binding mode with respect to bicarbonate could explain the lower midpoint of the iron couple observed in the presence of this anion [Deligiannakis, Y., Petrouleas, V., and Diner, B. A. (1994) Biochim. Biophys. Acta 1188, 260-270]. In agreement with the -60 mV/pH unit dependence of the iron midpoint potential in the presence of bicarbonate, the proton release upon iron oxidation by photosystem II is directly measured to 0.95 +/- 0.05 by the comparison of infrared signals of phosphate buffer and ferrocyanide modes. This accurate method may be applied to the study of other redox reactions in proteins. The pH dependence of the iron couple is proposed to reflect the deprotonation of D1His215, a putative iron ligand located at the Q(B) pocket, since the signal at 1094 cm(-1) assigned to the nu (C-N) mode of a histidinate ligand in the Fe3+ state is not observed in the presence of o-phenanthroline. Specific regulation of the pK(a) of D1His215 by bicarbonate is inferred from the absence of the band at 1094 cm(-1) in Fe2+/Fe3+ spectra recorded with glycolate, glyoxylate, or lactate. A broad positive continuum, maximum at approximate to 2550 cm(-1), observed in the presence of bicarbonate, but absent with o-phenanthroline or lactate, glycolate, and glyoxylate, indicates a hydrogen bond network from the non heme iron toward the Q(B) pocket involving bicarbonate and His D1-215. Proton release of about 1, measured upon iron oxidation at pH 6 with the latter anions, points to a proton release mechanism different from that involved in the presence of bicarbonate.
引用
收藏
页码:4044 / 4052
页数:9
相关论文
共 69 条
[1]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - PROTEIN COFACTOR (QUINONES AND FE-2+) INTERACTIONS .5. [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (22) :8487-8491
[2]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE PROTEIN SUBUNITS [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (17) :6162-6166
[3]   STRUCTURE OF THE PHOTOCHEMICAL-REACTION CENTER OF A SPHEROIDENE-CONTAINING PURPLE BACTERIUM, RHODOBACTER-SPHAEROIDES-Y, AT 3 ANGSTROM RESOLUTION [J].
ARNOUX, B ;
GAUCHER, JF ;
DUCRUIX, A ;
REISSHUSSON, F .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1995, 51 :368-379
[4]   Electrochemical and spectroscopic investigations of the cytochrome bc1 complex from Rhodobacter capsulatus [J].
Baymann, F ;
Robertson, DE ;
Dutton, PL ;
Mäntele, W .
BIOCHEMISTRY, 1999, 38 (40) :13188-13199
[5]   MOLECULAR-CHANGES FOLLOWING OXIDOREDUCTION OF CYTOCHROME-B559 CHARACTERIZED BY FOURIER-TRANSFORM INFRARED DIFFERENCE SPECTROSCOPY AND ELECTRON-PARAMAGNETIC RESONANCE - PHOTOOXIDATION IN PHOTOSYSTEM-II AND ELECTROCHEMISTRY OF ISOLATED CYTOCHROME-B559 AND IRON PROTOPORPHYRIN-IX-BISIMIDAZOLE MODEL COMPOUNDS [J].
BERTHOMIEU, C ;
BOUSSAC, A ;
MANTELE, W ;
BRETON, J ;
NABEDRYK, E .
BIOCHEMISTRY, 1992, 31 (46) :11460-11471
[6]   THE MOLECULAR MECHANISM OF THE BICARBONATE EFFECT AT THE PLASTOQUINONE REDUCTASE SITE OF PHOTOSYNTHESIS [J].
BLUBAUGH, DJ ;
GOVINDJEE .
PHOTOSYNTHESIS RESEARCH, 1988, 19 (1-2) :85-128
[7]   HIGH-POTENTIAL ACCEPTOR FOR PHOTOSYSTEM-II [J].
BOWES, JM ;
CROFTS, AR ;
ITOH, S .
BIOCHIMICA ET BIOPHYSICA ACTA, 1979, 547 (02) :320-335
[8]   Proton uptake upon quinone reduction in bacterial reaction centers: IR signature and possible participation of a highly polarizable hydrogen bond network [J].
Breton, J ;
Nabedryk, E .
PHOTOSYNTHESIS RESEARCH, 1998, 55 (2-3) :301-307
[9]   Electrostatic influence of Q(A) reduction on the IR vibrational mode of the 10a-ester C=O of H-A demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides [J].
Breton, J ;
Nabedryk, E ;
Allen, JP ;
Williams, JAC .
BIOCHEMISTRY, 1997, 36 (15) :4515-4525
[10]   VIBRATIONAL-SPECTRA OF LACTIC-ACID AND LACTATES [J].
CASSANAS, G ;
MORSSLI, M ;
FABREGUE, E ;
BARDET, L .
JOURNAL OF RAMAN SPECTROSCOPY, 1991, 22 (07) :409-413