Quantum phase transitions in classical nonequilibrium processes

被引:19
作者
Bettelheim, E
Agam, O [1 ]
Shnerb, NM
机构
[1] Hebrew Univ Jerusalem, Dept Phys, IL-91904 Jerusalem, Israel
[2] Coll Judea & Samaria, Dept Phys, IL-44837 Ariel, Israel
来源
PHYSICA E | 2001年 / 9卷 / 03期
基金
以色列科学基金会;
关键词
Lotka-Volterra equations; quantization; renormalization;
D O I
10.1016/S1386-9477(00)00268-X
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Diffusion-limited reaction of the Lotka-Volterra type is analyzed taking into account the discrete nature of the reactants. In the continuum approximation, the dynamics is dominated by an elliptic fixed point. This fixed point becomes unstable due to discretization effects, a scenario similar to quantum phase transitions. As a result, the long-time asymptotic behavior of the system changes and the dynamics flows into a limit cycle. The results are verified by numerical simulations. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:600 / 608
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1980, LECT NOTES BIOMATHEM
[2]   Theory of branching and annihilating random walks [J].
Cardy, J ;
Tauber, UC .
PHYSICAL REVIEW LETTERS, 1996, 77 (23) :4780-4783
[3]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1465, DOI 10.1088/0305-4470/9/9/008
[4]   RENORMALIZATION-GROUP CALCULATION FOR THE REACTION KA-]CIRCLE-DIVIDE [J].
LEE, BP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08) :2633-2652
[6]  
Murray J. D., 1993, MATH BIOL, DOI DOI 10.1007/978-3-662-08542-4
[7]   ROLE OF DENSITY FLUCTUATIONS IN BIMOLECULAR REACTION-KINETICS [J].
OVCHINNIKOV, AA ;
ZELDOVICH, YB .
CHEMICAL PHYSICS, 1978, 28 (1-2) :215-218
[8]   PATH INTEGRAL APPROACH TO BIRTH-DEATH PROCESSES ON A LATTICE [J].
PELITI, L .
JOURNAL DE PHYSIQUE, 1985, 46 (09) :1469-1483
[9]   PARTICLE ANTIPARTICLE ANNIHILATION IN DIFFUSIVE MOTION [J].
TOUSSAINT, D ;
WILCZEK, F .
JOURNAL OF CHEMICAL PHYSICS, 1983, 78 (05) :2642-2647
[10]  
Volterra V, 1931, LECON THEORIE MATH L