Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains

被引:74
作者
Rodriguez, E [1 ]
Hu, ZH [1 ]
Ou, S [1 ]
Volchegursky, Y [1 ]
Hutchinson, CR [1 ]
McDaniel, R [1 ]
机构
[1] Kosan Biosci Inc, Hayward, CA 94545 USA
关键词
polyketide; 6-deoxyerythronolide B; erythromycin; tylosin; antibiotic;
D O I
10.1007/s10295-003-0045-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Development of natural products for therapeutic use is often hindered by limited availability of material from producing organisms. The speed at which current technologies enable the cloning, sequencing, and manipulation of secondary metabolite genes for production of novel compounds has made it impractical to optimize each new organism by conventional strain improvement procedures. We have exploited the overproduction properties of two industrial organisms-Saccharopolyspora erythraea and Streptomyces fradiae, previously improved for erythromycin and tylosin production, respectively-to enhance titers of polyketides produced by genetically modified polyketide synthases (PKSs). An efficient method for delivering large PKS expression vectors into S. erythraea was achieved by insertion of a chromosomal attachment site (attB) for phiC31-based integrating vectors. For both strains, it was discovered that only the native PKS-associated promoter was capable of sustaining high polyketide titers in that strain. Expression of PKS genes cloned from wild-type organisms in the overproduction strains resulted in high polyketide titers whereas expression of the PKS gene from the S. erythraea overproducer in heterologous hosts resulted in only normal titers. This demonstrated that the overproduction characteristics are primarily due to mutations in non-PKS genes and should therefore operate on other PKSs. Expression of genetically engineered erythromycin PKS genes resulted in production of erythromycin analogs in greatly superior quantity than obtained from previously used hosts. Further development of these hosts could bypass tedious mutagenesis and screening approaches to strain improvement and expedite development of compounds from this valuable class of natural products.
引用
收藏
页码:480 / 488
页数:9
相关论文
共 36 条
[1]  
BALTZ RH, 1980, DEV IND MICROBIOL, V21, P43
[2]   THE MESSENGER-RNA FOR THE 23S RIBOSOMAL-RNA METHYLASE ENCODED BY THE ERME GENE OF SACCHAROPOLYSPORA-ERYTHRAEA IS TRANSLATED IN THE ABSENCE OF A CONVENTIONAL RIBOSOME-BINDING SITE [J].
BIBB, MJ ;
WHITE, J ;
WARD, JM ;
JANSSEN, GR .
MOLECULAR MICROBIOLOGY, 1994, 14 (03) :533-545
[3]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[4]   Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb) [J].
Brünker, P ;
Minas, W ;
Kallio, PT ;
Bailey, JE .
MICROBIOLOGY-UK, 1998, 144 :2441-2448
[5]   AN UNUSUALLY LARGE MULTIFUNCTIONAL POLYPEPTIDE IN THE ERYTHROMYCIN-PRODUCING POLYKETIDE SYNTHASE OF SACCHAROPOLYSPORA-ERYTHRAEA [J].
CORTES, J ;
HAYDOCK, SF ;
ROBERTS, GA ;
BEVITT, DJ ;
LEADLAY, PF .
NATURE, 1990, 348 (6297) :176-178
[6]   MODULAR ORGANIZATION OF GENES REQUIRED FOR COMPLEX POLYKETIDE BIOSYNTHESIS [J].
DONADIO, S ;
STAVER, MJ ;
MCALPINE, JB ;
SWANSON, SJ ;
KATZ, L .
SCIENCE, 1991, 252 (5006) :675-679
[7]  
Flett F, 1997, FEMS MICROBIOL LETT, V155, P223, DOI 10.1016/S0378-1097(97)00392-3
[8]   Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea [J].
Frykman, S ;
Leaf, T ;
Carreras, C ;
Licari, P .
BIOTECHNOLOGY AND BIOENGINEERING, 2001, 76 (04) :303-310
[9]   A phage integrase directs efficient site-specific integration in human cells [J].
Groth, AC ;
Olivares, EC ;
Thyagarajan, B ;
Calos, MP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5995-6000
[10]   ENGINEERED BIOSYNTHESIS OF A COMPLETE MACROLACTONE IN A HETEROLOGOUS HOST [J].
KAO, CM ;
KATZ, L ;
KHOSLA, C .
SCIENCE, 1994, 265 (5171) :509-512