High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2

被引:228
作者
Guo, Shaohua [1 ,2 ]
Yu, Haijun [1 ]
Liu, Pan [3 ]
Ren, Yang [4 ]
Zhang, Tao [1 ]
Chen, Mingwei [3 ]
Ishida, Masayoshi [2 ]
Zhou, Haoshen [1 ,2 ,5 ,6 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
[3] Tohoku Univ, WPI Adv Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Argonne Natl Lab, Argonne, IL 60439 USA
[5] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Dept Energy Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
关键词
HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; LONG-LIFE; REVERSIBLE ELECTRODE; POSITIVE ELECTRODE; SOLID-ELECTROLYTE; CATHODE MATERIALS; ENERGY-STORAGE; CYCLE LIFE; INSERTION;
D O I
10.1039/c4ee03361b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on low-cost and rich resources, sodium-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in the large-scale energy applications of renewable energy and smart grids. However, there are some critical drawbacks limiting its application, such as safety and stability problems. In this work, a stable symmetric sodium-ion battery based on the bipolar, active O3-type material, Na0.8Ni0.4Ti0.6O2, is developed. This bipolar material shows a typical O3-type layered structure, containing two electrochemically active transition metals with redox couples of Ni4+/Ni2+ and Ti4+/Ti3+, respectively. This Na0.8Ni0.4Ti0.6O2-based symmetric cell exhibits a high average voltage of 2.8 V, a reversible discharge capacity of 85 mA h g(-1), 75% capacity retention after 150 cycles and good rate capability. This full symmetric cell will greatly contribute to the development of room-temperature sodium-ion batteries with a view towards safety, low cost and long life, and it will stimulate further research on symmetric cells using the same active materials as both cathode and anode.
引用
收藏
页码:1237 / 1244
页数:8
相关论文
共 61 条
[1]   Krohnkite-Type Na2Fe(SO4)2•2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Ling, Chris D. ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2014, 26 (03) :1297-1299
[2]   Electrochemical investigation of the P2-NaxCoO2 phase diagram [J].
Berthelot, R. ;
Carlier, D. ;
Delmas, C. .
NATURE MATERIALS, 2011, 10 (01) :74-U3
[3]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[4]   STUDY OF THE NAXCRO2 AND NAXNIO2 SYSTEMS BY ELECTROCHEMICAL DESINTERCALATION [J].
BRACONNIER, JJ ;
DELMAS, C ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1982, 17 (08) :993-1000
[5]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA-KFSA [J].
Chen, Chih-Yao ;
Matsumoto, Kazuhiko ;
Nohira, Toshiyuki ;
Hagiwara, Rika ;
Fukunaga, Atsushi ;
Sakai, Shoichiro ;
Nitta, Koji ;
Inazawa, Shinji .
JOURNAL OF POWER SOURCES, 2013, 237 :52-57
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]  
Guignard M, 2013, NAT MATER, V12, P74, DOI [10.1038/NMAT3478, 10.1038/nmat3478]