Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability

被引:189
作者
Li, J. [1 ]
Kloepsch, R. [1 ]
Stan, M. C. [1 ]
Nowak, S. [1 ]
Kunze, M. [1 ]
Winter, M. [1 ]
Passerini, S. [1 ]
机构
[1] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
关键词
Lithium-ion battery; Cathode material; Li[Li0.2Mn0.56Ni0.16Co0.08]O-2; NMC; Cycling performance; Rate capability; LITHIUM BATTERIES M; HIGH-CAPACITY; ELECTRODES; MN; COMPLEXITY; NI; CO;
D O I
10.1016/j.jpowsour.2011.01.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The high voltage layered Li[Li0.2Mn0.56Ni0.16Co0.08]O-2 cathode material, which is a solid solution between Li2MnO3 and LiMn0.4Ni0.4Co0.2O2, has been synthesized by co-precipitation method followed by high temperature annealing at 900 degrees C. XRD and SEM characterizations proved that the as prepared powder is constituted of small and homogenous particles (100-300 nm), which are seen to enhance the material rate capability. After the initial decay, no obvious capacity fading was observed when cycling the material at different rates. Steady-state reversible capacities of 220 mAh g(-1) at 0.2C, 190 mAh g(-1) at 1C, 155 mAh g(-1) at 5C and 110 mAh g(-1) at 20C were achieved in long-term cycle tests within the voltage cutoff limits of 2.5 and 4.8 V at 20 degrees C. 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4821 / 4825
页数:5
相关论文
共 22 条
[1]   Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions [J].
Arinkumar, T. A. ;
Wu, Y. ;
Manthiram, A. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3067-3073
[2]   Chemical and structural instability of the chemically delithiated (1-z) Li[Li1/3Mn2/3]O2•(z) Li[Co1-yNiy]O2 (0≤y≤1 and 0≤z≤1) solid solution cathodes [J].
Arunkumar, T. A. ;
Alvarez, E. ;
Manthiram, A. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (02) :190-198
[3]   Structure of Li2MnO3 with different degrees of defects [J].
Boulineau, A. ;
Croguennec, L. ;
Delmas, C. ;
Weill, F. .
SOLID STATE IONICS, 2010, 180 (40) :1652-1659
[4]   Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts [J].
Gao, J. ;
Manthiram, A. .
JOURNAL OF POWER SOURCES, 2009, 191 (02) :644-647
[5]   High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J].
Gao, J. ;
Kim, J. ;
Manthiram, A. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) :84-86
[6]   Structural and electrochemical characterization of χLi[Li1/3Mn2/3]O2.(1-χ)Li[Ni1/3Mn1/3CO1/3]O2 (0 ≤ χ ≤ 0.9) as cathode materials for lithium ion batteries [J].
Guo, Xiao-Jian ;
Li, Yi-Xiao ;
Zheng, Min ;
Zheng, Jian-Ming ;
Li, Jie ;
Gong, Zheng-Liang ;
Yang, Yong .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :414-419
[7]   Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3•(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) [J].
Johnson, Christopher S. ;
Li, Naichao ;
Lefief, Christina ;
Vaughey, John T. ;
Thackeray, Michael M. .
CHEMISTRY OF MATERIALS, 2008, 20 (19) :6095-6106
[8]   The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes [J].
Johnson, CS ;
Kim, JS ;
Lefief, C ;
Li, N ;
Vaughey, JT ;
Thackeray, MM .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) :1085-1091
[9]   Interpreting the structural and electrochemical complexity of 0.5Li2MnO3•0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0≤x≤0.5) [J].
Kang, S.-H. ;
Kempgens, P. ;
Greenbaum, S. ;
Kropf, A. J. ;
Amine, K. ;
Thackeray, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (20) :2069-2077
[10]   Enhancing the rate capability of high capacity xLi2MnO3 • (1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment [J].
Kang, Sun-Ho ;
Thackeray, Michael M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (04) :748-751