Nanoscale mapping of ion diffusion in a lithium-ion battery cathode

被引:499
作者
Balke, N. [1 ]
Jesse, S. [1 ]
Morozovska, A. N. [2 ]
Eliseev, E. [3 ]
Chung, D. W. [4 ]
Kim, Y. [5 ]
Adamczyk, L. [5 ]
Garcia, R. E. [4 ]
Dudney, N. [5 ]
Kalinin, S. V. [1 ,5 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine
[3] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine
[4] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[5] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
IN-SITU AFM; ATOMIC-FORCE MICROSCOPY; ENERGY DENSITY; FILMS; SURFACE; LICOO2; EXPANSION; ELECTRODE; LIMN2O4; LI;
D O I
10.1038/nnano.2010.174
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The movement of lithium ions into and out of electrodes is central to the operation of lithium-ion batteries. Although this process has been extensively studied at the device level, it remains insufficiently characterized at the nanoscale level of grain clusters, single grains and defects. Here, we probe the spatial variation of lithium-ion diffusion times in the battery-cathode material LiCoO2 at a resolution of similar to 100 nm by using an atomic force microscope to both redistribute lithium ions and measure the resulting cathode deformation. The relationship between diffusion and single grains and grain boundaries is observed, revealing that the diffusion coefficient increases for certain grain orientations and single-grain boundaries. This knowledge provides feedback to improve understanding of the nanoscale mechanisms underpinning lithium-ion battery operation.
引用
收藏
页码:749 / 754
页数:6
相关论文
共 21 条
  • [1] CoO2, the end member of the LixCoO2 solid solution
    Amatucci, GG
    Tarascon, JM
    Klein, LC
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) : 1114 - 1123
  • [2] Reaction of Li with alloy thin films studied by in situ AFM
    Beaulieu, LY
    Hatchard, TD
    Bonakdarpour, A
    Fleischauer, MD
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) : A1457 - A1464
  • [3] A system for performing simultaneous in situ atomic force microscopy/optical microscopy measurements on electrode materials for lithium-ion batteries
    Beaulieu, LY
    Cumyn, VK
    Eberman, KW
    Krause, LJ
    Dahn, JR
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (08) : 3313 - 3319
  • [4] Structural analysis of submicrometer LiCoO2 films
    Bouwman, PJ
    Boukamp, BA
    Bouwmeester, HJM
    Wondergem, HJ
    Notten, PHL
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) : A311 - A317
  • [5] Atomic force microscopy studies of surface and dimensional changes in LixCoO2 crystals during lithium de-intercalation
    Clemencon, A.
    Appapillai, A. T.
    Kumar, S.
    Shao-Horn, Y.
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (13) : 4572 - 4580
  • [6] Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging
    Cohen, YS
    Aurbach, D
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (06) : 536 - 542
  • [7] Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures
    Doi, Takayuki
    Inaba, Minoru
    Tsuchiya, Hiroshi
    Jeong, Soon-Ki
    Iriyama, Yasutoshi
    Abe, Takeshi
    Ogumi, Zempachi
    [J]. JOURNAL OF POWER SOURCES, 2008, 180 (01) : 539 - 545
  • [8] Microstructural modeling and design of rechargeable lithium-ion batteries
    García, RE
    Chiang, YM
    Carter, WC
    Limthongkul, P
    Bishop, CM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (01) : A255 - A263
  • [9] Nanoscale ferroelectrics: processing, characterization and future trends
    Gruverman, A.
    Kholkin, A.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2006, 69 (08) : 2443 - 2474
  • [10] Lattice model calculation of the strain energy density and other properties of crystalline LiCoO2
    Hart, FX
    Bates, JB
    [J]. JOURNAL OF APPLIED PHYSICS, 1998, 83 (12) : 7560 - 7566