The COMATOSE ATP-binding cassette transporter is required for full fertility in arabidopsis

被引:70
作者
Footitt, Steven
Dietrich, Daniela
Fait, Aaron
Fernie, Alisdair R.
Holdsworth, Michael J.
Baker, Alison
Theodoulou, Frederica L. [1 ]
机构
[1] Rothamsted Res, Crop Performance & Improvement Div, Harpenden AL5 2JQ, Herts, England
[2] Univ Nottingham, Div Agr & Environm Sci, Loughborough LE12 5RD, Leics, England
[3] Max Planck Inst Mol Physiol, D-14476 Golm, Germany
[4] Univ Leeds, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1104/pp.107.099903
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1, lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues.
引用
收藏
页码:1467 / 1480
页数:14
相关论文
共 90 条
[1]   A defect in glyoxysomal fatty acid β-oxidation reduces jasmonic acid accumulation in Arabidopsis [J].
Afitlhile, MM ;
Fukushige, H ;
Nishimura, M ;
Hildebrand, DF .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2005, 43 (06) :603-609
[2]   DIFFERENTIAL STAINING OF ABORTED AND NONABORTED POLLEN [J].
ALEXANDER, MP .
STAIN TECHNOLOGY, 1969, 44 (03) :117-+
[3]   Role of auxin in regulating Arabidopsis flower development [J].
Aloni, R ;
Aloni, E ;
Langhans, M ;
Ullrich, CI .
PLANTA, 2006, 223 (02) :315-328
[4]   Chewing the fat:: β-oxidation in signalling and development [J].
Baker, A ;
Graham, IA ;
Holdsworth, M ;
Smith, SM ;
Theodoulou, FL .
TRENDS IN PLANT SCIENCE, 2006, 11 (03) :124-132
[5]   STARCH IN ANGIOSPERM POLLEN GRAINS AND ITS EVOLUTIONARY SIGNIFICANCE [J].
BAKER, HG ;
BAKER, I .
AMERICAN JOURNAL OF BOTANY, 1979, 66 (05) :591-600
[6]   Inputs to the active indole-3-acetic acid pool:: De novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation [J].
Bartel, B ;
LeClere, S ;
Magidin, M ;
Zolman, BK .
JOURNAL OF PLANT GROWTH REGULATION, 2001, 20 (03) :198-216
[7]   Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome [J].
Becker, JD ;
Boavida, LC ;
Carneiro, J ;
Haury, M ;
Feijó, JA .
PLANT PHYSIOLOGY, 2003, 133 (02) :713-725
[8]   Integrating membrane transport with male gametophyte development and function through transcriptomics [J].
Bock, KW ;
Honys, D ;
Ward, JM ;
Padmanaban, S ;
Nawrocki, EP ;
Hirschi, KD ;
Twell, D ;
Sze, H .
PLANT PHYSIOLOGY, 2006, 140 (04) :1151-1168
[9]   GABA in plants:: just a metabolite? [J].
Bouché, N ;
Fromm, H .
TRENDS IN PLANT SCIENCE, 2004, 9 (03) :110-115
[10]   Gene-specific involvement of β-oxidation in wound-activated responses in Arabidopsis [J].
Castillo, MC ;
Martínez, C ;
Buchala, A ;
Métraux, JP ;
León, J .
PLANT PHYSIOLOGY, 2004, 135 (01) :85-94