Defective development of secretory neurones in the hypothalamus of Arnt2-knockout mice

被引:93
作者
Hosoya, T
Oda, Y
Takahashi, S
Morita, M
Kawauchi, S
Ema, M
Yamamoto, M
Fujii-Kuriyama, Y [1 ]
机构
[1] Tohoku Univ, Grad Sch Sci, Dept Chem, Sendai, Miyagi 9808578, Japan
[2] Univ Tsukuba, Ctr Tsukuba Adv Res Alliance, Tsukuba, Ibaraki 3058577, Japan
[3] Univ Tsukuba, Inst Basic Med Sci, Tsukuba, Ibaraki 3058577, Japan
[4] Japan Sci & Technol, Core Res Evolut Sci & Technol, Tokyo, Japan
关键词
D O I
10.1046/j.1365-2443.2001.00421.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: Within the basic region-helix-loop-helix (bHLH)-PAS family of transcription factors, Arnt and Arnt2 play unique roles; these two factors not only heterodimerize with themselves, but also with other members of this family and they act as transcription regulators which bind to specific DNA elements. Whereas Arnt is broadly expressed in various tissues, the expression of Arnt2 is known to be limited to the neural tissues. Results: To elucidate the function of Arnt2 in detail, we cloned the mouse Arnt2 gene and its gene structure was determined. We subsequently generated germ line Arnt2 mutant mice by gene targeting technology. Heterozygous Arnt2 mice were viable, but homozygous Arnt2 gene knockout mice died shortly after birth. Histological and immunological analyses revealed that the supraoptic nuclei (SON) and the paraventricular nuclei (PVN) are hypocellular. Moreover, secretory neurones identified by the expression of neurosecretory hormone such as arginine vasopressin, oxytocin, corticotrophin-releasing hormone and somatostatin are completely absent in SON and PVN in the mutant Arnt2 mice. Consistent with these observations, prospective SON and PVN neurones which express Brn2 appeared around E13.5 in the mantle zone, but no neurones which expressed the neurosecretory hormones were found in the SON and PVN regions. Conclusions: These data show that the transcription factor Arnt2 controls the development of the secretory neurones at the later or final stages of differentiation rather than at the beginning stage. Strikingly similar observations have been reported with the Sim1 deficient mice. Taken together, our results demonstrate that Arnt2 is an indispensable transcription factor for the development of the hypothalamus, and suggest that Arnt2 is an obligatory partner molecule of Sim1 in the developmental process of the neuroendocrinological cell lineages.
引用
收藏
页码:361 / 374
页数:14
相关论文
共 59 条
[1]   Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene [J].
Acampora, D ;
Postiglione, MP ;
Avantaggiato, V ;
Di Bonito, M ;
Vaccarino, FM ;
Michaud, J ;
Simeone, A .
GENES & DEVELOPMENT, 1999, 13 (21) :2787-2800
[2]   Multilineage embryonic hematopoiesis requires hypoxic ARNT activity [J].
Adelman, DM ;
Maltepe, E ;
Simon, MC .
GENES & DEVELOPMENT, 1999, 13 (19) :2478-2483
[4]   DROSOPHILA SINGLE-MINDED GENE AND THE MOLECULAR-GENETICS OF CNS MIDLINE DEVELOPMENT [J].
CREWS, S ;
FRANKS, R ;
HU, S ;
MATTHEWS, B ;
NAMBU, J .
JOURNAL OF EXPERIMENTAL ZOOLOGY, 1992, 261 (03) :234-244
[5]   PROTEIN ENCODED BY V-ERBA FUNCTIONS AS A THYROID-HORMONE RECEPTOR ANTAGONIST [J].
DAMM, K ;
THOMPSON, CC ;
EVANS, RM .
NATURE, 1989, 339 (6226) :593-597
[6]  
DONGEN VPA, 1998, CENTRAL NERVOUS SYST, V3, P1844
[7]   Two splice variants of the hypoxia-inducible factor HIF-1α as potential dimerization partners of ARNT2 in neurons [J].
Drutel, G ;
Kathmann, M ;
Héron, A ;
Gros, C ;
Macé, S ;
Schwartz, JC ;
Arrang, JM .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (10) :3701-3708
[8]   Cloning and selective expression in brain and kidney of ARNT2 homologous to the Ah receptor nuclear translocator (ARNT) [J].
Drutel, G ;
Kathmann, M ;
Heron, A ;
Schwartz, JC ;
Arrang, JM .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 225 (02) :333-339
[9]   Molecular bases for circadian clocks [J].
Dunlap, JC .
CELL, 1999, 96 (02) :271-290
[10]   A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1 alpha regulates the VEGF expression and is potentially involved in lung and vascular development [J].
Ema, M ;
Taya, S ;
Yokotani, N ;
Sogawa, K ;
Matsuda, Y ;
FujiiKuriyama, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4273-4278