Patched, the receptor of Hedgehog, is a lipoprotein receptor

被引:59
作者
Callejo, Ainhoa [1 ]
Culi, Joaquim [1 ]
Guerrero, Isabel [1 ]
机构
[1] Univ Autonoma Madrid, Ctr Biol Mol Severo Ochoa, E-28049 Madrid, Spain
关键词
Drosophila; LDLR; morphogen;
D O I
10.1073/pnas.0705603105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hedgehog (Hh) family of secreted signaling proteins has a broad variety of functions during metazoan development and implications in human disease. Despite Hh being modified by two lipophilic adducts, Hh migrates far from its site of synthesis and programs cellular outcomes depending on its local concentrations. Recently, lipoproteins were suggested to act as carriers to mediate Hh transport in Drosophila. Here, we examine the role of lipophorins (Lp), the Drosophila lipoproteins, in Hh signaling in the wing imaginal disk, a tissue that does not express Lp but obtains it through the hemolymph. We use the up-regulation of the Lp receptor 2 (LpR2), the main Lp receptor expressed in the imaginal disk cells, to increase Lp endocytosis and locally reduce the amount of available free extracellular Lp in the wing disk epithelium. Under this condition, secreted Hh is not stabilized in the extracellular matrix. We obtain similar results after a generalized knock-down of hemolymph Lp levels. These data suggest that Hh must be packaged with Lp in the producing cells for proper spreading. Interestingly, we also show that Patched (Ptc), the Hh receptor, is a lipoprotein receptor; Ptc actively internalizes Lp into the endocytic compartment in a Hh-independent manner and physically interacts with Lp. Ptc, as a lipoprotein receptor, can affect intracellular lipid homeostasis in imaginal disk cells. However, by using different Ptc mutants, we show that Lp internalization does not play a major role in Hh signal transduction but does in Hh gradient formation.
引用
收藏
页码:912 / 917
页数:6
相关论文
共 49 条
[1]  
Arrese EL, 2001, J LIPID RES, V42, P225
[2]   Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion [J].
Bellaiche, Y ;
The, I ;
Perrimon, N .
NATURE, 1998, 394 (6688) :85-88
[3]   Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways [J].
Bornemann, DJ ;
Duncan, JE ;
Staatz, W ;
Selleck, S ;
Warrior, R .
DEVELOPMENT, 2004, 131 (09) :1927-1938
[4]   Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells [J].
Burke, R ;
Nellen, D ;
Bellotto, M ;
Hafen, E ;
Senti, KA ;
Dickson, BJ ;
Basler, K .
CELL, 1999, 99 (07) :803-815
[5]   Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix [J].
Callejo, A ;
Torroja, C ;
Quijada, L ;
Guerrero, I .
DEVELOPMENT, 2006, 133 (03) :471-483
[6]   THE DROSOPHILA SEGMENT POLARITY GENE PATCHED INTERACTS WITH DECAPENTAPLEGIC IN WING DEVELOPMENT [J].
CAPDEVILA, J ;
ESTRADA, MP ;
SANCHEZHERRERO, E ;
GUERRERO, I .
EMBO JOURNAL, 1994, 13 (01) :71-82
[7]   Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates [J].
Chen, MH ;
Li, YJ ;
Kawakami, T ;
Xu, SM ;
Chuang, PT .
GENES & DEVELOPMENT, 2004, 18 (06) :641-659
[8]   Dual roles for patched in sequestering and transducing hedgehog [J].
Chen, Y ;
Struhl, G .
CELL, 1996, 87 (03) :553-563
[9]   Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function [J].
Chiang, C ;
Ying, LTT ;
Lee, E ;
Young, KE ;
Corden, JL ;
Westphal, H ;
Beachy, PA .
NATURE, 1996, 383 (6599) :407-413
[10]  
deCelis JF, 1997, DEVELOPMENT, V124, P3241