The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1

被引:225
作者
Walden, H
Podgorski, MS
Huang, DT
Miller, DW
Howard, RJ
Minor, DL
Holton, JM
Schulman, BA
机构
[1] St Jude Childrens Res Hosp, Dept Biol Struct, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Genet Tumor Cell Biol, Memphis, TN 38105 USA
[3] Univ Calif San Francisco, Inst Cardiovasc Res, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
[6] Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
D O I
10.1016/S1097-2765(03)00452-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
E1 enzymes initiate ubiquitin-like protein (ubl) transfer cascades by catalyzing adenylation of the ubl's C terminus. An E1's selectivity for its cognate ubl is essential because the E1 subsequently coordinates the ubi with its correct downstream pathway. We report here the structure of the 120 kDa quaternary complex between human APPBP1-UBA3, a heterodimeric E1, its ubi NEDD8, and ATP. The E1 selectively recruits NEDD8 through a bipartite interface, involving a domain common to all ubl activating enzymes including bacterial ancestors, and also eukaryotic E1-specific sequences. By modeling ubiquitin into the NEDD8 binding site and performing mutational analysis, we identify a single conserved arginine in APPBP1-UBA3 that acts as a selectivity gate, preventing misactivation of ubiquitin by NEDD8's E1. NEDD8 residues that interact with E1 correspond to residues in ubiquitin important for binding the proteasome and other ubiquitin-interacting proteins, suggesting that the conjugation and recognition machineries have coevolved for each specific ubl.
引用
收藏
页码:1427 / 1437
页数:11
相关论文
共 56 条
[1]   The NEDD8 pathway is essential for SCFβ-TrCp-mediated ubiquitination and processing of the NF-κB precursor p105 [J].
Amir, RE ;
Iwai, K ;
Ciechanover, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (26) :23253-23259
[2]   Structure determination of the small ubiquitin-related modifier SUMO-1 [J].
Bayer, P ;
Arndt, A ;
Metzger, S ;
Mahajan, R ;
Melchior, F ;
Jaenicke, R ;
Becker, J .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (02) :275-286
[3]   Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting [J].
Beal, R ;
Deveraux, Q ;
Xia, G ;
Rechsteiner, M ;
Pickart, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (02) :861-866
[4]   Conservation in the mechanism of nedd8 activation by the human AppBp1-Uba3 heterodimer [J].
Bohnsack, RN ;
Haas, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (29) :26823-26830
[5]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[6]   SITE-DIRECTED MUTAGENESIS OF UBIQUITIN - DIFFERENTIAL ROLES FOR ARGININE IN THE INTERACTION WITH UBIQUITIN-ACTIVATING ENZYME [J].
BURCH, TJ ;
HAAS, AL .
BIOCHEMISTRY, 1994, 33 (23) :7300-7308
[7]   Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly [J].
Chen, L ;
Shinde, U ;
Ortolan, TG ;
Madura, K .
EMBO REPORTS, 2001, 2 (10) :933-938
[8]   The ubiquitin-related protein RUB1 and auxin response in Arabidopsis [J].
del Pozo, JC ;
Timpte, C ;
Tan, S ;
Callis, J ;
Estelle, M .
SCIENCE, 1998, 280 (5370) :1760-1763
[9]  
Delano WL, 2002, PYMOL USERS MANUAL
[10]   Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain [J].
Deng, L ;
Wang, C ;
Spencer, E ;
Yang, LY ;
Braun, A ;
You, JX ;
Slaughter, C ;
Pickart, C ;
Chen, ZJ .
CELL, 2000, 103 (02) :351-361