Error-minimizing dead zone for basis function networks

被引:9
作者
Heiss, M
机构
[1] Institut für Allgemeine Elektrotechnik-Automobilelektronik, Technical University of Vienna
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1996年 / 7卷 / 06期
关键词
D O I
10.1109/72.548178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The incorporation of dead zones in the error signal of basis function networks avoids the networks' overtraining and guarantees the convergence of the normalized least mean square (LMS) algorithm and related algorithms. A new so-called error-minimizing dead zone is presented providing the least a posteriori error out of the set of all convergence assuring dead zones. A general convergence proof; is developed for LMS algorithms with dead zones, and the error-minimizing dead zone is derived from the resulting convergence condition, The performance is compared with the performance of classical dead zones.
引用
收藏
页码:1503 / 1506
页数:4
相关论文
共 14 条
  • [1] Astrom K. J., 1989, Adaptive Control, V2nd
  • [2] Brown M, 1994, NEUROFUZZY ADAPTIVE
  • [3] CHEN FC, 1991, PROCEEDINGS OF THE 30TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, P156, DOI 10.1109/CDC.1991.261277
  • [4] NETWORKS AND THE BEST APPROXIMATION PROPERTY
    GIROSI, F
    POGGIO, T
    [J]. BIOLOGICAL CYBERNETICS, 1990, 63 (03) : 169 - 176
  • [5] Heiss M., 1994, Automatisierungstechnik, V42, P497
  • [6] REINFORCEMENT LEARNING OR TRACKING OF INPUT-OUTPUT MAPS
    HEISS, M
    [J]. APPLIED ARTIFICIAL INTELLIGENCE, 1994, 8 (04) : 483 - 496
  • [7] KAMPL S, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P3782
  • [8] Universal Approximation Using Radial-Basis-Function Networks
    Park, J.
    Sandberg, I. W.
    [J]. NEURAL COMPUTATION, 1991, 3 (02) : 246 - 257
  • [9] Pottmann M., 1992, Journal of Process Control, V2, P189, DOI 10.1016/0959-1524(92)80008-L
  • [10] Powell M.J., 1992, ADV NUMERICAL ANAL, V2