Fractional-order systems and PI-λ-D-μ-controllers

被引:2455
作者
Podlubny, I [1 ]
机构
[1] Tech Univ Kosice, BERG Fac, Dept Management & Control Engn, Kosice 04200, Slovakia
关键词
fractional-order controllers; functional-order systems; fractional differential equations; Laplace transforms; transfer functions;
D O I
10.1109/9.739144
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic systems of an arbitrary real order (fractional-order systems) are considered, A concept of a fractional-order PI(lambda) D(mu)-controller, involving fractional-order integrator and fractional-order differentiator, is proposed. The Laplace transform formula for a new function of the Mittag-Leffer-type made it possible to obtain explicit analytical expressions for the unit-step and unit-impulse response of a linear fractional-order system with fractional-order controller both for the open and closed leap. An example demonstrating the use of the obtained formulas and the advantages of the proposed PI(lambda) D(mu)-controllers is given.
引用
收藏
页码:208 / 214
页数:7
相关论文
共 27 条
[1]  
ABRAMOWITZ A, 1964, NBS APPL MATH SERIES
[2]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[3]  
[Anonymous], J APPL MECH
[4]  
[Anonymous], P 12 IMACS WORLD C P
[5]  
AXTELL M, 1990, PROC NAECON IEEE NAT, P563, DOI 10.1109/NAECON.1990.112826
[6]   FRACTIONAL ORDER STATE-EQUATIONS FOR THE CONTROL OF VISCOELASTICALLY DAMPED STRUCTURES [J].
BAGLEY, RL ;
CALICO, RA .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1991, 14 (02) :304-311
[7]   NEW DISSIPATION MODEL BASED ON MEMORY MECHANISM [J].
CAPUTO, M ;
MAINARDI, F .
PURE AND APPLIED GEOPHYSICS, 1971, 91 (08) :134-&
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]  
DOETSCH G, 1956, ANLEITUNG PRAKTISCHE
[10]  
Dorcak L., 1994, P 11 INT C PROC CONT, P58