Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells

被引:168
作者
Ding, Yi [1 ,2 ,3 ]
Shen, Shiqian [1 ,2 ]
Lino, Andreia C. [1 ,2 ]
de lafaille, Maria A. Curotto [1 ,2 ,4 ]
Lafaille, Juan J. [1 ,2 ,4 ]
机构
[1] NYU, Sch Med, Mol Pathogenesis Program, New York, NY 10016 USA
[2] NYU, Sch Med, Skirball Inst Biomol Med, New York, NY 10016 USA
[3] NYU, Sch Med, Sackler Inst Grad Biomed Sci, New York, NY 10016 USA
[4] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nm1707
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
beta-catenin is a central molecule in the Wnt pathway. Expression of a stable form of beta-catenin on CD4(+)CD25(+) regulatory T (T-reg) cells resulted in a marked enhancement of survival of these cells in vitro. Furthermore, stable beta-catenin-expressing CD4(+)CD25(+) T-reg cells outcompeted control T-reg cells in vivo, and the number of T-reg cells necessary for protection against inflammatory bowel disease could be substantially reduced when stable beta-catenin-expressing CD4(+)CD25(+) T-reg cells were used instead of control T-reg cells. Expression of stable beta-catenin on potentially pathogenic CD4(+)CD25(-) T cells rendered these cells anergic, and the beta-catenin-mediated induction of anergy occurred even in Foxp3-deficient T cells. Thus, through enhanced survival of existing regulatory T cells, and through induction of unresponsiveness in precursors of T effector cells, beta-catenin stabilization has a powerful effect on the prevention of inflammatory disease.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 40 条
[1]   Axin-mediated CKI phosphorylation of β-catenin at Ser 45:: a molecular switch for the Wnt pathway [J].
Amit, S ;
Hatzubai, A ;
Birman, Y ;
Andersen, JS ;
Ben-Shushan, E ;
Mann, M ;
Ben-Neriah, Y ;
Alkalay, I .
GENES & DEVELOPMENT, 2002, 16 (09) :1066-1076
[2]   In vivo instruction of suppressor commitment in naive T cells [J].
Apostolou, I ;
von Boehmer, H .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 199 (10) :1401-1408
[3]   Natural versus adaptive regulatory T cells [J].
Bluestone, JA ;
Abbas, AK .
NATURE REVIEWS IMMUNOLOGY, 2003, 3 (03) :253-257
[4]   Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3 [J].
Chen, WJ ;
Jin, WW ;
Hardegen, N ;
Lei, KJ ;
Li, L ;
Marinos, N ;
McGrady, G ;
Wahl, SM .
JOURNAL OF EXPERIMENTAL MEDICINE, 2003, 198 (12) :1875-1886
[5]   Specific requirement for Bax, not Bak, in Myc-induced apoptosis and tumor suppression in vivo [J].
Dansen, TB ;
Whitfield, J ;
Rostker, F ;
Brown-Swigart, L ;
Evan, GI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (16) :10890-10895
[6]   Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes [J].
de Lafaille, MAC ;
Muriglan, S ;
Sunshine, MJ ;
Lei, Y ;
Kutchukhidze, N ;
Furtado, GC ;
Wensky, AK ;
Olivares-Villagómez, D ;
Lafaille, JJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 2001, 194 (09) :1349-1359
[7]   CD25- T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion [J].
de Lafaille, MAC ;
Lino, AC ;
Kutchukhidze, N ;
Lafaille, JJ .
JOURNAL OF IMMUNOLOGY, 2004, 173 (12) :7259-7268
[8]  
de Lafaille MAC, 2002, CURR OPIN IMMUNOL, V14, P771
[9]   INDUCTION OF APOPTOSIS IN FIBROBLASTS BY C-MYC PROTEIN [J].
EVAN, GI ;
WYLLIE, AH ;
GILBERT, CS ;
LITTLEWOOD, TD ;
LAND, H ;
BROOKS, M ;
WATERS, CM ;
PENN, LZ ;
HANCOCK, DC .
CELL, 1992, 69 (01) :119-128
[10]   Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells (Reprinted from vol 4, pg 330-336, 2003) [J].
Fontenot, Jason D. ;
Gavin, Marc A. ;
Rudensky, Alexander Y. .
JOURNAL OF IMMUNOLOGY, 2017, 198 (03) :986-992