Nonlinear neural-network modeling of an induction machine

被引:26
作者
Moon, SI [1 ]
Keyhani, A
Pillutla, S
机构
[1] Seoul Natl Univ, Sch Elect Engn, Seoul, South Korea
[2] Ohio State Univ, Dept Elect Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/87.748146
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new approach to identify the nonlinear model of an induction machine. The free acceleration test is performed on a 5-HP induction machine, and the resulting stator voltages, stator currents and rotor angular velocity are measured. Using the maximum likelihood (ML) algorithm, the parameter sets of the nonlinear model at various operating conditions are estimated, Then the nonlinear model parameters are represented by the feedforward neural networks (FNN's), For validation, the simulated responses of the identified model using the measured and the simulated input patterns for the FNN models are performed, The identified model can be utilized for power system transient stability analysis and for on-line computer controlled electric drives.
引用
收藏
页码:203 / 211
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 1992, NEURAL NETWORKS FUZZ
[2]   MAXIMUM-LIKELIHOOD AND PREDICTION ERROR METHODS [J].
ASTROM, KJ .
AUTOMATICA, 1980, 16 (05) :551-574
[3]  
DEKOCK JA, 1993, IEEE PES 1993 WINT M
[4]   THEORY AND APPLICATIONS OF NEURAL NETWORKS FOR INDUSTRIAL CONTROL-SYSTEMS [J].
FUKUDA, T ;
SHIBATA, T .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1992, 39 (06) :472-489
[5]   IGSPICE SIMULATION OF INDUCTION MACHINES WITH SATURABLE INDUCTANCES [J].
KEYHANI, A ;
TSAI, H .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1989, 4 (01) :118-125
[6]   MAXIMUM-LIKELIHOOD-ESTIMATION OF SYNCHRONOUS MACHINE PARAMETERS AND STUDY OF NOISE EFFECT FROM DC FLUX DECAY DATA [J].
KEYHANI, A ;
MOON, SI .
IEE PROCEEDINGS-C GENERATION TRANSMISSION AND DISTRIBUTION, 1992, 139 (01) :76-80
[7]   MAXIMUM-LIKELIHOOD-ESTIMATION OF GENERATOR STABILITY-CONSTANTS USING SSFR TEST DATA [J].
KEYHANI, A ;
HAO, SG ;
SCHULZ, RP .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 1991, 6 (01) :140-154
[8]  
Krause P.C., 1994, ANAL ELECT MACHINERY
[9]  
Krose B. J. A., 1991, INTRO NEURAL NETWORK
[10]  
LEWIS FL, 1986, OPTIMAL ESTIMTION