Clustering and its validation in a symbolic framework

被引:50
作者
Mali, K
Mitra, S
机构
[1] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
[2] Univ Kalyani, Dept Comp Sci, Kalyani 741235, W Bengal, India
关键词
hierarchical clustering; symbolic clustering; symbolic data; validity index;
D O I
10.1016/S0167-8655(03)00066-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering of symbolic data, using different validity indices, is proposed for determining the optimal number of meaningful clusters. Symbolic objects include linguistic, nominal, boolean, and interval-type of features, along with quantitative attributes. Clustering in this domain involves the use of symbolic dissimilarity between the objects. The novelty of the method lies in transforming the different clustering validity indices, like Normalized Modified Hubert's statistic, Davies-Bouldin index and Dunn's index, from the quantitative domain to the symbolic framework. The effectiveness of symbolic clustering is demonstrated on several real life benchmark data sets. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:2367 / 2376
页数:10
相关论文
共 16 条
[1]   Dynamic self-organizing maps with controlled growth for knowledge discovery [J].
Alahakoon, D ;
Halgamuge, SK ;
Srinivasan, B .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03) :601-614
[2]  
Ben-Hur Asa, 2002, Pac Symp Biocomput, P6
[3]   Some new indexes of cluster validity [J].
Bezdek, JC ;
Pal, NR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1998, 28 (03) :301-315
[4]   ITERATE: A conceptual clustering algorithm for data mining [J].
Biswas, G ;
Weinberg, JB ;
Fisher, DH .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 1998, 28 (02) :219-230
[5]  
Blake C.L., 1998, UCI repository of machine learning databases
[6]  
DAVIES GR, 1937, BUSINESS STAT
[7]  
FRIDLYAND J, 2001, 600 UC BERK
[8]   DIVISIVE CLUSTERING OF SYMBOLIC OBJECTS USING THE CONCEPTS OF BOTH SIMILARITY AND DISSIMILARITY [J].
GOWDA, KC ;
RAVI, TV .
PATTERN RECOGNITION, 1995, 28 (08) :1277-1282
[9]   SYMBOLIC CLUSTERING USING A NEW DISSIMILARITY MEASURE [J].
GOWDA, KC ;
DIDAY, E .
PATTERN RECOGNITION, 1991, 24 (06) :567-578
[10]  
Jain K, 1988, Algorithms for clustering data