Decoherence and thermalization in a simple bosonic system

被引:23
作者
Cejnar, P
Zelevinsky, V
Sokolov, VV
机构
[1] Charles Univ Prague, Inst Nucl & Particle Phys, CR-18000 Prague, Czech Republic
[2] Univ Stellenbosch, Inst Theoret Phys, ZA-7602 Matieland, South Africa
[3] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[4] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 03期
关键词
D O I
10.1103/PhysRevE.63.036127
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Properties of a parameter-dependent quantum system with the Hamiltonian (H) over cap(lambda) randomized by fluctuations of the parameter lambda in a narrow range are investigated. The model employed (the interacting boson model-1) exhibits a crossover behavior at a critical parameter value. Due to the fluctuations, individual eigenstates \psi (alpha)(lambda)) of the Hamiltonian become statistical ensembles of states [density matrices <(<rho>)over cap>(alpha)(lambda)], which allows us to study effects related to the decoherence and thermalization. in the decoherence part, we evaluate von Neumann and information entropies of the density matrices <(<rho>)over cap>(alpha)(lambda) and the overlaps of the eigenstates of the density matrix with various physically relevant bases. An increased decoherence at the r phase transitional" point and an exceptional role of the dynamic-symmetry U(5) basis are discovered. In the part devoted to the thermalization, we develop a method of how a given density matrix <(<rho>)over cap>(alpha)(lambda) can be represented by on equivalent canonical (thermal) ensemble. Thermodynamic consequences of the quantum "phase transition" (related, in particular, to the specific heat of the thermal equivalent) are discussed.
引用
收藏
页码:361271 / 361279
页数:9
相关论文
共 31 条
[1]  
[Anonymous], 1994, Algebraic Methods in Molecular and Nuclear Physics
[2]   Band structure from random interactions [J].
Bijker, R ;
Frank, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (03) :420-422
[3]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[4]   Wave-function entropy and dynamical symmetry breaking in the interacting boson model [J].
Cejnar, P ;
Jolie, J .
PHYSICAL REVIEW E, 1998, 58 (01) :387-399
[5]   Quantum phase transitions studied within the interacting boson model [J].
Cejnar, P ;
Jolie, J .
PHYSICAL REVIEW E, 2000, 61 (06) :6237-6247
[6]   RANDOM-PHASE APPROXIMATION AND BROKEN SYMMETRY [J].
DAVIS, ED ;
HEISS, WD .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1986, 12 (09) :805-820
[7]   CLASSICAL LIMIT OF THE INTERACTING-BOSON MODEL [J].
DIEPERINK, AEL ;
SCHOLTEN, O ;
IACHELLO, F .
PHYSICAL REVIEW LETTERS, 1980, 44 (26) :1747-1750
[8]   PHASE-TRANSITIONS AND THE GEOMETRIC-PROPERTIES OF THE INTERACTING BOSON MODEL [J].
FENG, DH ;
GILMORE, R ;
DEANS, SR .
PHYSICAL REVIEW C, 1981, 23 (03) :1254-1258
[9]  
FESHBACH H, 1992, THEORETICAL NUCLEAR, P286
[10]   Statistical theory of finite Fermi systems based on the structure of chaotic eigenstates [J].
Flambaum, VV ;
Izrailev, FM .
PHYSICAL REVIEW E, 1997, 56 (05) :5144-5159