Background charges and consistent continuous deformations of 2d gravity theories

被引:6
作者
Brandt, F
Troost, W
VanProeyen, A
机构
[1] Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3001 Leuven
关键词
background charges; consistent deformations of 2d gravity theories; non-critical string theory; chiral null models;
D O I
10.1016/0370-2693(96)00177-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss all background charges and continuous consistent deformations of standard 2d gravity theories with scalar matter fields. The background charges and those deformations which change nontrivially the gauge symmetries are closely linked, and exist only if the target space has a covariantly constant Killing vector (a null vector for the deformations). The deformed actions provide interesting novel 2d gravity models. Some of them lead to non-critical string theories.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 19 条
[1]   LOCAL BRST COHOMOLOGY IN EINSTEIN-YANG-MILLS THEORY [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
NUCLEAR PHYSICS B, 1995, 455 (1-2) :357-408
[2]   CONSISTENT COUPLINGS BETWEEN FIELDS WITH A GAUGE FREEDOM AND DEFORMATIONS OF THE MASTER EQUATION [J].
BARNICH, G ;
HENNEAUX, M .
PHYSICS LETTERS B, 1993, 311 (1-4) :123-129
[3]   RENORMALIZATION OF GAUGE-INVARIANT OPERATORS AND ANOMALIES IN YANG-MILLS THEORY [J].
BARNICH, G ;
HENNEAUX, M .
PHYSICAL REVIEW LETTERS, 1994, 72 (11) :1588-1591
[4]   LOCAL BRST COHOMOLOGY IN THE ANTIFIELD FORMALISM .2. APPLICATION TO YANG-MILLS THEORY [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :93-116
[5]   LOCAL BRST COHOMOLOGY IN THE ANTIFIELD FORMALISM .1. GENERAL THEOREMS [J].
BARNICH, G ;
BRANDT, F ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) :57-91
[6]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[7]  
BATALIN JA, 1981, PHYS LETT B, V102
[8]   CORRECTION [J].
BLANCHETTE, RA .
PHYTOPATHOLOGY, 1984, 74 (04) :508-508
[9]  
BRANDT F, KULTF9517
[10]  
BRANDT F, 1995, GEOMETRY CONSTRAINED