Simulation of voltage-dependent interactions of alpha-helical peptides with lipid bilayers

被引:28
作者
Biggin, PC [1 ]
Sansom, MSP [1 ]
机构
[1] UNIV OXFORD,MOLEC BIOPHYS LAB,OXFORD OX1 3QU,ENGLAND
基金
英国惠康基金;
关键词
delta-toxin; delta-endotoxin; channel-forming peptide; molecular dynamics; transbilayer potential;
D O I
10.1016/0301-4622(96)00015-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Pore formation in lipid bilayers by channel-forming peptides and toxins is thought to follow voltage-dependent insertion of amphipathic alpha-helices into lipid bilayers. We have developed an approximate potential for use within the CHARMm molecular mechanics program which enables one to simulate voltage-dependent interaction of such helices with a lipid bilayer. Two classes of helical peptides which interact with lipid bilayers have been studied: (a) delta-toxin, a 26 residue channel-forming peptide from Staphylococcus aureus; and (b) synthetic peptides corresponding to the alpha 5 and alpha 7 helices of the pore-forming domain of Bacillus thuringiensis CryIIIA delta-endotoxin. Analysis of delta-toxin molecular dynamics (MD) simulations suggested that the presence of a transbilayer voltage stabilized the inserted location of delta-toxin helices, but did not cause insertion per se. A series of simulations for the alpha 5 and alpha 7 peptides revealed dynamic switching of the alpha 5 helix between a membrane-associated and a membrane-inserted state in response to a transbilayer voltage. In contrast the alpha 7 helix did not exhibit such switching but instead retained a membrane associated state. These results are in agreement with recent experimental studies of the interactions of synthetic alpha 5 and alpha 7 peptides with lipid bilayers.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 45 条