Equivalence of star products on a symplectic manifold;: an introduction to Deligne's Cech cohomology classes

被引:60
作者
Gutt, S
Rawnsley, J
机构
[1] Free Univ Brussels, Dept Math, BE-1050 Brussels, Belgium
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
star products; symplectic manifolds;
D O I
10.1016/S0393-0440(98)00045-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
These notes grew out of the Quantisation Seminar 1997-1998 on Deligne's paper [P. Deligne, Deformations de l'algebre des fonctions d'une variete symplectique: Comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (New Series) 1 (1995) 667-697] and the lecture of the first author in the Workshop on Quantisation and Momentum Maps at the University of Warwick in December 1997. We recall the definitions of the cohomology classes introduced by Deligne for equivalence classes of differential star products on a symplectic manifold and show the properties of and relations between these classes by elementary methods based on Cech cohomology. (C) 1999 Elsevier Science B.V. All rights reserved. Subj. Class.: Differential geometry; Quantum mechanics 1991 MSG: 53015; 58705.
引用
收藏
页码:347 / 392
页数:46
相关论文
共 25 条
[1]  
[Anonymous], SELECTA MATH
[2]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[3]   QUANTUM-MECHANICS AS A DEFORMATION OF CLASSICAL MECHANICS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
LETTERS IN MATHEMATICAL PHYSICS, 1977, 1 (06) :521-530
[4]   Equivalence of star products [J].
Bertelson, M ;
Cahen, M ;
Gutt, S .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A93-A107
[5]  
BERTELSON M, 1995, MEMOIRE LICENCE ULB
[6]  
BOURBAKI N, GROUPES ALGEBRES ELE, pCH2
[7]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[8]  
DEWILDE M, 1984, ANN I H POINCARE-PHY, V40, P77
[9]  
DEWILDE M, 1996, 96005 DEFORMATIONS A
[10]  
Fedosov B., 1996, MATH TOPICS, V9