Phosphopeptide derivatization signatures to identify serine and threonine phosphorylated peptides by mass spectrometry

被引:52
作者
Molloy, MP [1 ]
Andrews, PC [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1021/ac0104227
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of rapid, global methods for monitoring states of protein phosphorylation would provide greater insight for understanding many fundamental biological processes. Current best practices use mass spectrometry (MS) to profile digests of purified proteins for evidence of phosphorylation. However, this approach is beset by inherent difficulties in both identifying phosphopeptides from within a complex mixture containing many other unmodified peptides and ionizing phosphopeptides in positive-ion MS. We have modified an approach that uses barium hydroxide to rapidly eliminate the phosphoryl group of serine and threonine modified amino acids, creating dehydroamino acids that are susceptible to nucleophilic derivatization. By derivatizing a protein digest with a mixture of two different alkanethiols, phosphopeptide-specific derivatives were readily distinguished by MS due to their characteristic ion-pair signature. The resulting tagged ion pairs accommodate simple and rapid screening for phosphopeptides in a protein digest, obviating the use of isotopically labeled samples for qualitative phosphopeptide detection. MALDI-MS is used in a first pass manner to detect derivatized phosphopeptides, while the remaining sample is available for tandem MS to reveal the site of derivatization and, thus, phosphorylation. We demonstrated the technique by identifying phosphopeptides from fl-casein and ovalbumin. The approach was further used to examine in vitro phosphorylation of recombinant human HSP22 by protein kinase C, revealing phosphorylation of Thr-63.
引用
收藏
页码:5387 / 5394
页数:8
相关论文
共 43 条
[1]  
Amado FML, 1997, RAPID COMMUN MASS SP, V11, P1347, DOI 10.1002/(SICI)1097-0231(199708)11:12<1347::AID-RCM974>3.0.CO
[2]  
2-8
[3]   A multidimensional electrospray MS-based approach to phosphopeptide mapping [J].
Annan, RS ;
Huddleston, MJ ;
Verma, R ;
Deshaies, RJ ;
Carr, SA .
ANALYTICAL CHEMISTRY, 2001, 73 (03) :393-404
[4]   EPITAXIAL PROTEIN INCLUSION IN SINAPIC ACID CRYSTALS [J].
BEAVIS, RC ;
BRIDSON, JN .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1993, 26 (03) :442-447
[5]   HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 (3DHSP27) [J].
Benndorf, R ;
Sun, XK ;
Gilmont, RR ;
Biedermann, KJ ;
Molloy, MP ;
Goodmurphy, CW ;
Cheng, H ;
Andrews, PC ;
Welsh, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :26753-26761
[6]   RAPID AND SELECTIVE MODIFICATION OF PHOSPHOSERINE RESIDUES CATALYZED BY BA2+ IONS FOR THEIR DETECTION DURING PEPTIDE MICROSEQUENCING [J].
BYFORD, MF .
BIOCHEMICAL JOURNAL, 1991, 280 :261-265
[7]  
Cao P, 2000, RAPID COMMUN MASS SP, V14, P1600, DOI 10.1002/1097-0231(20000915)14:17<1600::AID-RCM68>3.0.CO
[8]  
2-V
[9]   Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry [J].
Carr, SA ;
Huddleston, MJ ;
Annan, RS .
ANALYTICAL BIOCHEMISTRY, 1996, 239 (02) :180-192
[10]   Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins [J].
Cohen, SL ;
Chait, BT .
ANALYTICAL CHEMISTRY, 1996, 68 (01) :31-37