Exploring large graphs in 3D hyperbolic space

被引:96
作者
Munzner, T [1 ]
机构
[1] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/38.689657
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Drawing graphs as nodes connected by links is visually compelling but computationally difficult. Hyperbolic space and spanning trees can reduce visual clutter, speed up layout, and provide fluid interacion.
引用
收藏
页码:18 / 23
页数:6
相关论文
共 11 条
[1]  
[Anonymous], P CHI 95, DOI DOI 10.1145/223904.223956
[2]  
BRANDENBURG FJ, 1988, LECT NOTES COMPUTER, V439, P1
[3]  
Bruss I, 1996, LECT NOTES COMPUT SC, V1027, P99, DOI 10.1007/BFb0021794
[4]   Extending distortion viewing from 2D to 3D [J].
Carpendale, MST ;
Cowperthwaite, DJ ;
Fracchia, FD .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1997, 17 (04) :42-51
[5]  
Conway J., 1988, SPHERE PACKINGS
[6]   ALGORITHMS FOR DRAWING GRAPHS - AN ANNOTATED-BIBLIOGRAPHY [J].
DIBATTISTA, G ;
EADES, P ;
TAMASSIA, R ;
TOLLIS, IG .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1994, 4 (05) :235-282
[7]  
Martin G. E, 1975, FDN GEOMETRY NONEUCL
[8]   H3: Laying out large directed graphs in 3D hyperbolic space [J].
Munzner, T .
IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, PROCEEDINGS, 1997, :2-10
[9]  
Munzner T., 1995, P 1 S VIRT REAL MOD, P33, DOI DOI 10.1145/217306.217311
[10]  
PHILLIPS M, 1992, 1992 S INT 3D GRAPHI, V25, P209