High order Runge-Kutta methods on manifolds

被引:208
作者
Munthe-Kaas, H [1 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
关键词
D O I
10.1016/S0168-9274(98)00030-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a family of Runge-Kutta type integration schemes of arbitrarily high order for differential equations evolving on manifolds. We prove that any classical Runge-Kutta method can be turned into an invariant method of the same order on a general homogeneous manifold, and present a family of algorithms that are relatively simple to implement. These are defined in a general abstract framework, based on a Lie algebra acting on the manifold. The general framework gives rise to a wide range of different concrete applications; we present some examples. (C) 1999 Elsevier Science B.V. and IMACS. All rights reserved.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 28 条
[1]  
ABRAHAM R, 1988, TENSOR ANAL APPL
[2]   Note on the integration of linear differential equations [J].
Baker, HF .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1905, 2 :293-296
[3]  
BRYANT RL, 1995, GEOMETRY QUANTUM FIE, V1
[4]   Numerical solution of isospectral flows [J].
Calvo, MP ;
Iserles, A ;
Zanna, A .
MATHEMATICS OF COMPUTATION, 1997, 66 (220) :1461-1486
[5]  
CALVO MP, 1996, NUMERICAL ANAL AR MI, P57
[6]   NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS [J].
CROUCH, PE ;
GROSSMAN, R .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :1-33
[7]  
Hairer E., 2008, Solving Ordinary Differential Equations I Nonstiff problems
[8]  
Hausdorff F., 1906, BER VERH KGL SA CHS, V58, P19
[9]  
HOCHBRUCK M, IN PRESS SIAM J SCI
[10]  
ISERLES A, 1997, 1997NA3 DAMTP U CAMB