Limit on the speed of quantum computation in determining parity

被引:80
作者
Farhi, E [1 ]
Goldstone, J
Gutmann, S
Sipser, M
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Northeastern Univ, Dept Math, Boston, MA 02115 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1103/PhysRevLett.81.5442
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider a function f which is defined on the integers from 1 to N and takes the values -1 and +1. The parity of f is the product over all x from 1 to N of f(x). With no further information about f, to classically determine the parity of f requires N calls of the function f. We show that any quantum algorithm capable of determining the parity of f contains at least N/2 applications of the unitary operator which evaluates f. Thus, for this problem, quantum computers cannot outperform classical computers. [S0031-9007(98)07850-8].
引用
收藏
页码:5442 / 5444
页数:3
相关论文
共 10 条
[1]  
BEALS R, QUANTPH9802049
[2]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[3]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[4]  
BUHRMAN H, IN PRESS P 30 ANN AC
[5]  
Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
[6]  
2-U
[7]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[8]  
OZHIGOV Y, QUANTPH9712051
[9]   Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J].
Shor, PW .
SIAM REVIEW, 1999, 41 (02) :303-332
[10]  
Simon D. R., 1994, Proceedings. 35th Annual Symposium on Foundations of Computer Science (Cat. No.94CH35717), P116, DOI 10.1109/SFCS.1994.365701