Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU1108

被引:50
作者
Chinnawirotpisan, P
Theeragool, G [1 ]
Limtong, S
Toyama, H
Adachi, O
Matsushita, K
机构
[1] Kasetsart Univ, Fac Sci, Dept Microbiol, Bangkok 10900, Thailand
[2] Yamaguchi Univ, Fac Agr, Dept Biol Chem, Yamaguchi 7538515, Japan
关键词
acetic acid bacteria; Acetobacter pasteurianus; quinoprotein alcohol dehydrogenase; NAD-dependent alcohol dehydrogenase;
D O I
10.1016/S1389-1723(04)70150-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The relationship between quinoprotein alcohol dehydrogenase (ADH) and NAD-dependent ADH was studied by constructing quinoprotein ADH-deficient mutants. Quinoprotein ADH-deficient mutants were successfully constructed from Acetobacter pasteurianus SKU1108 by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) mutagenesis and also by adhA gene disruption with a kana-mycin cassette. The NTG mutant exhibited a complete loss of its acetate-producing ability and acetic acid resistance, while the disruptant also exhibited a loss of its acetic acid resistance but retained a weak ADH activity. The immunoblot analysis of quinoprotein ADH indicated that there are no appreciable ADH subunits in the membranes of both mutant strains. The NTG mutant grew better than the wild-type strain in ethanol-containing medium, despite the absence of quinoprotein ADH. In the mutant, the activities of two NAD-dependent ADHs, present in a small amount in the wild-type strain, markedly increased in the cytoplasm when cultured in a medium containing ethanol, concomitant to the increase in the activities of the key enzymes in TCA and glyoxylate cycles. The disruptant showed a poorer growth than the wild-type strain, producing a lower amount of acetic acid in ethanol culture, and it induced one of the two NAD-dependent ADHs and some of the acetate-assimilating enzymes induced in the NTG mutant. This study clearly showed that quinoprotein ADH is extensively involved in acetic acid production, while NAD-dependent ADH only in ethanol assimilation through the TCA and glyoxylate cycles in acetic acid bacteria. The differences between the NTG mutant and the disruptant are also discussed.
引用
收藏
页码:564 / 571
页数:8
相关论文
共 27 条
[1]   CRYSTALLIZATION AND PROPERTIES OF NADP-DEPENDENT ALDEHYDE DEHYDROGENASE FROM GLUCONOBACTER-MELANOGENUS [J].
ADACHI, O ;
MATSUSHITA, K ;
SHINAGAWA, E ;
AMEYAMA, M .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1980, 44 (01) :155-164
[2]   PURIFICATION AND PROPERTIES OF PARTICULATE ALCOHOL-DEHYDROGENASE FROM ACETOBACTER-ACETI [J].
ADACHI, O ;
MIYAGAWA, E ;
SHINAGAWA, E ;
MATSUSHITA, K ;
AMEYAMA, M .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1978, 42 (12) :2331-2340
[3]   D-FRUCTOSE DEHYDROGENASE OF GLUCONOBACTER-INDUSTRIUS - PURIFICATION, CHARACTERIZATION, AND APPLICATION TO ENZYMATIC MICRO-DETERMINATION OF D-FRUCTOSE [J].
AMEYAMA, M ;
SHINAGAWA, E ;
MATSUSHITA, K ;
ADACHI, O .
JOURNAL OF BACTERIOLOGY, 1981, 145 (02) :814-823
[4]  
AMEYAMA M, 1982, METHOD ENZYMOL, V89, P20
[5]  
Bernt E, 1974, METHOD ENZYMAT AN, V3, P1499
[6]   Purification and characterization of two NAD-dependent alcohol dehydrogenases (ADHs) induced in the quinoprotein ADH-deficient mutant of Acetobacter pasteurianus SKU1108 [J].
Chinnawirotpisan, P ;
Matsushita, K ;
Toyama, H ;
Adachi, O ;
Limtong, S ;
Theeragool, G .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2003, 67 (05) :958-965
[7]   SIMPLE TECHNIQUE FOR ELIMINATING INTERFERENCE BY DETERGENTS IN LOWRY METHOD OF PROTEIN DETERMINATION [J].
DULLEY, JR ;
GRIEVE, PA .
ANALYTICAL BIOCHEMISTRY, 1975, 64 (01) :136-141
[8]  
FRANKEL EP, 1981, METHOD ENZYMOL, V71, P317
[9]   A new insertion sequence IS1452 from Acetobacter pasteurianus [J].
Kondo, K ;
Horinouchi, S .
MICROBIOLOGY-UK, 1997, 143 :539-546
[10]   Characterization of an insertion sequence, IS12528, from Gluconobacter suboxydans [J].
Kondo, K ;
Horinouchi, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (03) :1139-1142