Regeneration of injured axons in the adult mammalian central nervous system

被引:49
作者
Tatagiba, M [1 ]
Brosamle, C [1 ]
Schwab, ME [1 ]
机构
[1] UNIV ZURICH,BRAIN RES INST,CH-8029 ZURICH,SWITZERLAND
关键词
axonal regrowth; central nervous system regeneration; neurite growth inhibitors; neurotrophic factors; spinal cord;
D O I
10.1097/00006123-199703000-00023
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
THE AXONS OF peripheral nerves have a high capacity for regeneration after injury, whereas injury to the axons in the adult central nervous system (CNS) of higher species does not generally result in regeneration. In recent years, significant developments in neuroscience research have resulted in an improved understanding of the processes involved in the axonal response to CNS trauma. Myelin-associated proteins in the CNS white matter play a crucial role as strong inhibitors of the growth of nerve fibers. Neutralization of these proteins by monoclonal antibody IN-1 directed against the inhibitory proteins led to pronounced axonal regeneration in the adult spinal cords of lesioned rats. The morphological findings were recently complemented by the demonstration of very significant functional improvements in rats with transection lesions of their spinal cords after treatment with the antibody IN-1 that neutralizes the myelin-associated nerve growth inhibitors. Moreover, several neurotrophic factors that promote axonal survival and sprouting in the peripheral nervous system and the CNS have been identified in recent years. The combined use of specific neurotrophic factors and the IN-1 antibody in different experimental procedures, including spinal cord injury, have significantly improved regenerative axonal growth. We briefly review these recent developments in CNS axonal regeneration research and discuss possible clinical applications.
引用
收藏
页码:541 / 546
页数:6
相关论文
共 45 条
[1]   DEGENERATIVE AND REGENERATIVE RESPONSES OF INJURED NEURONS IN THE CENTRAL-NERVOUS-SYSTEM OF ADULT MAMMALS [J].
AGUAYO, AJ ;
RASMINSKY, M ;
BRAY, GM ;
CARBONETTO, S ;
MCKERRACHER, L ;
VILLEGASPEREZ, MP ;
VIDALSANZ, M ;
CARTER, DA .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1991, 331 (1261) :337-343
[2]   OLIGODENDROCYTES ARREST NEURITE GROWTH BY CONTACT INHIBITION [J].
BANDTLOW, C ;
ZACHLEDER, T ;
SCHWAB, ME .
JOURNAL OF NEUROSCIENCE, 1990, 10 (12) :3837-3848
[3]   ROLE OF INTRACELLULAR CALCIUM IN NI-35-EVOKED COLLAPSE OF NEURONAL GROWTH CONES [J].
BANDTLOW, CE ;
SCHMIDT, MF ;
HASSINGER, TD ;
SCHWAB, ME ;
KATER, SB .
SCIENCE, 1993, 259 (5091) :80-83
[4]   AXOTOMY RESULTS IN DELAYED DEATH AND APOPTOSIS OF RETINAL GANGLION-CELLS IN ADULT-RATS [J].
BERKELAAR, M ;
CLARKE, DB ;
WANG, YC ;
BRAY, GM ;
AGUAYO, AJ .
JOURNAL OF NEUROSCIENCE, 1994, 14 (07) :4368-4374
[5]   RECOVERY FROM SPINAL-CORD INJURY MEDIATED BY ANTIBODIES TO NEURITE GROWTH-INHIBITORS [J].
BREGMAN, BS ;
KUNKELBAGDEN, E ;
SCHNELL, L ;
DAI, HN ;
GAO, D ;
SCHWAB, ME .
NATURE, 1995, 378 (6556) :498-501
[6]   Axonal regeneration in the mammalian CNS [J].
Brosamle, C ;
Schwab, ME .
SEMINARS IN NEUROSCIENCE, 1996, 8 (02) :107-113
[7]   ANTIBODY AGAINST MYELIN-ASSOCIATED INHIBITOR OF NEURITE GROWTH NEUTRALIZES NONPERMISSIVE SUBSTRATE PROPERTIES OF CNS WHITE MATTER [J].
CARONI, P ;
SCHWAB, ME .
NEURON, 1988, 1 (01) :85-96
[8]   2 MEMBRANE-PROTEIN FRACTIONS FROM RAT CENTRAL MYELIN WITH INHIBITORY PROPERTIES FOR NEURITE GROWTH AND FIBROBLAST SPREADING [J].
CARONI, P ;
SCHWAB, ME .
JOURNAL OF CELL BIOLOGY, 1988, 106 (04) :1281-1288
[10]   AXONAL ELONGATION INTO PERIPHERAL NERVOUS-SYSTEM BRIDGES AFTER CENTRAL NERVOUS-SYSTEM INJURY IN ADULT-RATS [J].
DAVID, S ;
AGUAYO, AJ .
SCIENCE, 1981, 214 (4523) :931-933