Mutations in the signature motif in MutS affect ATP-induced clamp formation and mismatch repair

被引:8
作者
Acharya, Samir [1 ,2 ]
机构
[1] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA
[2] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA
关键词
D O I
10.1111/j.1365-2958.2008.06386.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MutS protein dimer recognizes and co-ordinates repair of DNA mismatches. Mismatch recognition by the N-terminal mismatch recognition domain and subsequent downstream signalling by MutS appear coupled to the C-terminal ATP catalytic site, Walker box, through nucleotide-mediated conformational transitions. Details of this co-ordination are not understood. The focus of this study is a conserved loop in Escherichia coli MutS that is predicted to mediate cross-talk between the two ATP catalytic sites in MutS homodimer. Mutagenesis was employed to assess the role of this loop in regulating MutS function. All mutants displayed mismatch repair defects in vivo. Biochemical characterization further revealed defects in ATP binding, ATP hydrolysis as well as effective mismatch recognition. The kinetics of initial burst of ATP hydrolysis was similar to wild type but the magnitude of the burst was reduced for the mutants. Given its proximity to the ATP bound in the opposing monomer in the crystal and its potential analogy with signature motif of ABC transporters, the results strongly suggest that the loop co-ordinates ATP binding/hydrolysis in trans by the two catalytic sites. Importantly, our data reveal that the loop plays a direct role in co-ordinating conformational changes involved in long-range communication between Walker box and mismatch recognition domains.
引用
收藏
页码:1544 / 1559
页数:16
相关论文
共 71 条
[1]   The coordinated functions of the E-coli MutS and MutL proteins in mismatch repair [J].
Acharya, S ;
Foster, PL ;
Brooks, P ;
Fishel, R .
MOLECULAR CELL, 2003, 12 (01) :233-246
[2]   Crystal structure and biochemical analysis of the MutS•ADP•Beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair [J].
Alani, E ;
Lee, JY ;
Schofield, MJ ;
Kijas, AW ;
Hsieh, P ;
Yang, W .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (18) :16088-16094
[3]   MutS mediates heteroduplex loop formation by a translocation mechanism [J].
Allen, DJ ;
Makhov, A ;
Grilley, M ;
Taylor, J ;
Thresher, R ;
Modrich, P ;
Griffith, JD .
EMBO JOURNAL, 1997, 16 (14) :4467-4476
[4]   Asymmetric ATP binding and hydrolysis activity of the Thermus aquaticus MutS dimer is key to modulation of its interactions with mismatched DNA [J].
Antony, E ;
Hingorani, MM .
BIOCHEMISTRY, 2004, 43 (41) :13115-13128
[5]   Mismatch recognitioh-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair [J].
Antony, E ;
Hingorani, MM .
BIOCHEMISTRY, 2003, 42 (25) :7682-7693
[6]   Differential and simultaneous adenosine di- and triphosphate binding by MutS [J].
Bjornson, KP ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (20) :18557-18562
[7]   Modulation of MutS ATP hydrolysis by DNA cofactors [J].
Bjornson, KP ;
Allen, DJ ;
Modrich, P .
BIOCHEMISTRY, 2000, 39 (11) :3176-3183
[8]   Distinct MutS DNA-binding modes that are differentially modulated by ATP binding and hydrolysis [J].
Blackwell, LJ ;
Bjornson, KP ;
Allen, DJ ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34339-34347
[9]   Nucleotide-promoted release of hMutSα from heteroduplex DNA is consistent with an ATP-dependent translocation Mechanism [J].
Blackwell, LJ ;
Martik, D ;
Bjornson, KP ;
Bjornson, ES ;
Modrich, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32055-32062
[10]   MUTATION IN THE DNA MISMATCH REPAIR GENE HOMOLOG HMLH1 IS ASSOCIATED WITH HEREDITARY NONPOLYPOSIS COLON-CANCER [J].
BRONNER, CE ;
BAKER, SM ;
MORRISON, PT ;
WARREN, G ;
SMITH, LG ;
LESCOE, MK ;
KANE, M ;
EARABINO, C ;
LIPFORD, J ;
LINDBLOM, A ;
TANNERGARD, P ;
BOLLAG, RJ ;
GODWIN, AR ;
WARD, DC ;
NORDENSKJOLD, M ;
FISHEL, R ;
KOLODNER, R ;
LISKAY, RM .
NATURE, 1994, 368 (6468) :258-261