Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction

被引:129
作者
Jeong, Soon-Ki [1 ]
Inaba, Minoru [2 ]
Iriyarna, Yasutoshi [3 ]
Abe, Takeshi [3 ]
Ogumi, Zernpachi [3 ]
机构
[1] Soonchunhyang Univ, Dept Chem Engn, Chungnam 336745, South Korea
[2] Doshisha Univ, Fac Engn, Dept Mol Sci & Technol, Kyoto 6100321, Japan
[3] Kyoto Univ, Grad Sch Engn, Dept Energy & Hydrocarbon Chem, Nishikyo Ku, Kyoto 6158510, Japan
关键词
graphite negative electrode; propylene carbonate; lithium intercalation; atomic force microscopy; surface film;
D O I
10.1016/j.jpowsour.2007.08.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study examines the electrochemical reactions occurring at graphite negative electrodes of lithium-ion batteries in a propylene carbonate (PC) electrolyte that contains different concentrations of lithium salts such as, LiClO4, LiPF6 or LiN(SO2C2F5)(2). The electrode reactions are significantly affected by the electrolyte concentration. In concentrated solutions, lithium ions are reversibly intercalated within the graphite to form stage I lithium-graphite intercalation compounds (Li-GICs), regardless of the lithium salt used. On the other hand, electrolyte decomposition and exfoliation of the graphene layers occur continuously in the low-concentration range. In situ analysis with atomic force microscopy reveals that a thin film (thickness of similar to 8 nm) forms on the graphite surface in a concentrated solution, e.g., 3.27 mol kg(-1) LiN(SO2C2F5)(2)/PC, after the first potential cycle between 2.9 and 0 V versus Li+/Li. There is no evidence of the co-intercalation of solvent molecules in the concentrated solution. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:540 / 546
页数:7
相关论文
共 35 条
[1]   Effect of co-intercalated organic solvents in graphite on electrochemical Li intercalation [J].
Abe, T ;
Mizutani, Y ;
Kawabata, N ;
Inaba, M ;
Ogumi, Z .
SYNTHETIC METALS, 2001, 125 (02) :249-253
[2]   THE CATHODIC DECOMPOSITION OF PROPYLENE CARBONATE IN LITHIUM BATTERIES [J].
ARAKAWA, M ;
YAMAKI, JI .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 219 (1-2) :273-280
[3]   CATHODIC REDUCTION OF GRAPHITE IN ORGANIC SOLUTIONS OF ALKALI AND NR4+ SALTS [J].
BESENHAR.JO ;
FRITZ, HP .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1974, 53 (02) :329-333
[4]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[5]  
BIENSAN P, 2000, 10 INT M LITH BATT C
[6]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[7]   ELECTROCHEMICAL DECOMPOSITION OF PROPYLENE CARBONATE ON GRAPHITE [J].
DEY, AN ;
SULLIVAN, BP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1970, 117 (02) :222-&
[8]   CONDUCTIVITY OF ELECTROLYTES FOR RECHARGEABLE LITHIUM BATTERIES [J].
DUDLEY, JT ;
WILKINSON, DP ;
THOMAS, G ;
LEVAE, R ;
WOO, S ;
BLOM, H ;
HORVATH, C ;
JUZKOW, MW ;
DENIS, B ;
JURIC, P ;
AGHAKIAN, P ;
DAHN, JR .
JOURNAL OF POWER SOURCES, 1991, 35 (01) :59-82
[9]  
EICHINGER G, 1976, J ELECTROANAL CHEM, V74, P183, DOI 10.1016/S0022-0728(76)80234-3
[10]   STUDIES OF LITHIUM INTERCALATION INTO CARBONS USING NONAQUEOUS ELECTROCHEMICAL-CELLS [J].
FONG, R ;
VONSACKEN, U ;
DAHN, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2009-2013