Quantum error correction for continuously detected errors

被引:75
作者
Ahn, C [1 ]
Wiseman, HM
Milburn, GJ
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Griffith Univ, Sch Sci, Ctr Quantum Dynam, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
[3] Univ Queensland, Sch Phys Sci, Ctr Quantum Comp Technol, Brisbane, Qld 4072, Australia
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevA.67.052310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that quantum feedback control can be used as a quantum-error-correction process for errors induced by a weak continuous measurement. In particular, when the error model is restricted to one, perfectly measured, error channel per physical qubit, quantum feedback can act to perfectly protect a stabilizer codespace. Using the stabilizer formalism we derive an explicit scheme, involving feedback and an additional constant Hamiltonian, to protect an (n-1)-qubit logical state encoded in n physical qubits. This works for both Poisson (jump) and white-noise (diffusion) measurement processes. Universal quantum computation is also possible in this scheme. As an example, we show that detected-spontaneous emission error correction with a driving Hamiltonian can greatly reduce the amount of redundancy required to protect a state from that which has been previously postulated [e.g., Alber , Phys. Rev. Lett. 86, 4402 (2001)].
引用
收藏
页数:11
相关论文
共 36 条
[1]  
Ahn C, 2003, QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, P345
[2]   Continuous quantum error correction via quantum feedback control [J].
Ahn, C ;
Doherty, AC ;
Landahl, AJ .
PHYSICAL REVIEW A, 2002, 65 (04) :10
[3]   Stabilizing distinguishable qubits against spontaneous decay by detected-jump correcting quantum codes [J].
Alber, G ;
Beth, T ;
Charnes, C ;
Delgado, A ;
Grassl, M ;
Mussinger, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (19) :4402-4405
[4]  
ALBER G, QUANTPH0208140
[5]  
[Anonymous], 1985, IBM Technical Disclosure Bulletin, V28, P3153
[6]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[7]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[8]  
Carmichael H., 1993, OPEN SYSTEMS APPROAC
[9]   Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries [J].
Dodd, JL ;
Nielsen, MA ;
Bremner, MJ ;
Thew, RT .
PHYSICAL REVIEW A, 2002, 65 (04) :4
[10]  
Doherty A. C., 1999, THESIS U AUCKLAND