Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N

被引:186
作者
Li, Wen [1 ]
Wu, Guotao [2 ]
Araujo, C. Moyses [3 ]
Scheicher, Ralph H. [3 ]
Blomqvist, Andreas [3 ]
Ahuja, Rajeev [3 ]
Xiong, Zhitao [2 ]
Feng, Yuanping [1 ]
Chen, Ping [2 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[3] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, SE-75120 Uppsala, Sweden
关键词
MOLECULAR-DYNAMICS SIMULATION; LITHIUM NITRIDE; SOLID ELECTROLYTES; SINGLE-CRYSTALS; LICL-KCL-LI3N SYSTEMS; LI3N; NMR; BATTERIES; PRESSURE; ENERGY;
D O I
10.1039/c0ee00052c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
beta-Li3N of hexagonal D-6h(4) (P6(3)/mmc) structure was synthesized by high-energy ball milling commercial Li3N (composed of both alpha and beta phases). Ionic conductivities of alpha-Li3N and beta-Li3N were tested by direct current (D. C.) and alternating current (A. C.) impedance methods. beta-Li3N exhibited the same order of magnitude of Li+ ion conductivity (2.085 x 10(-4) S cm(-1)) as that of alpha-Li3N (5.767 x 10(-4) S cm(-1)) at room temperature. First-principles calculations were employed to simulate the diffusion mechanism of Li+ ion in alpha-Li3N and beta-Li3N. Our results indicate that the diffusion of Li+ ion in beta-Li3N likely occurs between pure Li-beta(1) planes, which is different from that in alpha-Li3N, where the diffusion of Li+ ion occurs within Li2N plane. The Li+ ion migration energy barriers (E-m) for alpha-Li3N and beta-Li3N are 0.007 eV and 0.038 eV, respectively.
引用
收藏
页码:1524 / 1530
页数:7
相关论文
共 41 条
[1]   LITHIUM ION CONDUCTION IN LITHIUM NITRIDE SINGLE-CRYSTALS AND SINTERS [J].
ALPEN, UV ;
BELL, MF ;
GLADDEN, T .
ELECTROCHIMICA ACTA, 1979, 24 (07) :741-744
[2]   IMPEDANCE MEASUREMENTS ON LI3 N SINGLE-CRYSTALS [J].
ALPEN, UV ;
BELL, MF .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1979, 99 (01) :85-92
[3]   LI3N - PROMISING LI IONIC CONDUCTOR [J].
ALPEN, UV .
JOURNAL OF SOLID STATE CHEMISTRY, 1979, 29 (03) :379-392
[4]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[5]   THE HISTORY OF POLYMER ELECTROLYTES [J].
ARMAND, M .
SOLID STATE IONICS, 1994, 69 (3-4) :309-319
[6]   AC IMPEDANCE OF POWDERED AND SINTERED SOLID IONIC CONDUCTORS [J].
ARMSTRONG, RD ;
DICKINSON, T ;
WILLIS, PM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1974, 53 (03) :389-405
[7]   LI+ DIFFUSION IN THE FAST IONIC CONDUCTOR LI3N INVESTIGATED BY BETA-RADIATION DETECTED NMR [J].
BADER, B ;
HEITJANS, P ;
STOCKMANN, HJ ;
ACKERMANN, H ;
BUTTLER, W ;
FREILANDER, P ;
KIESE, G ;
VANDERMAREL, C ;
SCHIRMER, A .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (20) :4779-4800
[8]   LI-7 DIFFUSION CONSTANT IN THE SUPERIONIC CONDUCTOR LI3N MEASURED BY NMR [J].
BECHTOLDSCHWEICKERT, E ;
MALI, M ;
ROOS, J ;
BRINKMANN, D .
PHYSICAL REVIEW B, 1984, 30 (05) :2891-2893
[9]   PHASE-TRANSFORMATIONS OF LITHIUM NITRIDE UNDER PRESSURE [J].
BEISTER, HJ ;
HAAG, S ;
KNIEP, R ;
STROSSNER, K ;
SYASSEN, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1988, 27 (08) :1101-1103
[10]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979