Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases

被引:124
作者
Peterson, AT [1 ]
Martínez-Campos, C
Nakazawa, Y
Martínez-Meyer, E
机构
[1] Univ Kansas, Museum Nat Hist, Lawrence, KS 66045 USA
[2] Univ Kansas, Biodivers Res Ctr, Lawrence, KS 66045 USA
[3] Secretaria Salud Mexico, Inst Diagnost & Referencia Epiemiol InDRE, Entomol Lab, Mexico City, DF, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Biol, Mexico City 04510, DF, Mexico
[5] Univ Nacl Autonoma Mexico, Fac Ciencias, Mexico City 04510, DF, Mexico
基金
美国国家科学基金会;
关键词
dengue; Aedes aegypti; ecological niche modeling; spatiotemporal variation; remote sensing; Mexico;
D O I
10.1016/j.trstmh.2005.02.004
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Numerous human diseases- malaria, dengue, yellow fever and leishmaniasis, to name a few-are transmitted by insect vectors with brief life cycles and biting activity that varies in both space and time. Although the general geographic distributions of these epidemiologically important species are known, the spatiotemporal variation in their emergence and activity remains poorly understood. We used ecological niche modeling via a genetic algorithm to produce time-specific predictive models of monthly distributions of. Aedes aegypti in Mexico in 1995. Significant predictions of monthly mosquito activity and distributions indicate that predicting spatiotemporal dynamics of disease vector species is feasible; significant coincidence with human cases of dengue indicate that these dynamics probably translate directly into transmission of dengue virus to humans. This approach provides new potential for optimizing use of resources for disease prevention and remediation via automated forecasting of disease transmission risk. (c) 2005 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:647 / 655
页数:9
相关论文
共 33 条
[1]   Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best [J].
Abeku, TA ;
de Vlas, SJ ;
Borsboom, G ;
Teklehaimanot, A ;
Kebede, A ;
Olana, D ;
van Oortmarssen, GJ ;
Habbema, JDF .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2002, 7 (10) :851-857
[2]   Evaluating predictive models of species' distributions: criteria for selecting optimal models [J].
Anderson, RP ;
Lew, D ;
Peterson, AT .
ECOLOGICAL MODELLING, 2003, 162 (03) :211-232
[3]   Using satellite and field data with crop growth modeling to monitor and estimate corn yield in Mexico [J].
Báez-González, AD ;
Chen, PY ;
Tiscareño-López, M ;
Srinivasan, R .
CROP SCIENCE, 2002, 42 (06) :1943-1949
[4]   Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050 [J].
Bakkenes, M ;
Alkemade, JRM ;
Ihle, F ;
Leemans, R ;
Latour, JB .
GLOBAL CHANGE BIOLOGY, 2002, 8 (04) :390-407
[5]   Speciation and distribution of the members of the Anopheles punctulatus (Diptera: Culicidae) group in Papua New Guinea [J].
Cooper, RD ;
Waterson, DGE ;
Frances, SP ;
Beebe, NW ;
Sweeney, AW .
JOURNAL OF MEDICAL ENTOMOLOGY, 2002, 39 (01) :16-27
[6]  
EGBERT SL, 2002, P IEEE 2002 INT GEOS, V4, P2337
[7]   Malaria early warning in Kenya [J].
Hay, SI ;
Rogers, DJ ;
Shanks, GD ;
Myers, MF ;
Snow, RW .
TRENDS IN PARASITOLOGY, 2001, 17 (02) :95-99
[8]   Forecasting, warning, and detection of malaria epidemics: a case study [J].
Hay, SI ;
Were, EC ;
Renshaw, M ;
Noor, AM ;
Ochola, SA ;
Olusanmi, L ;
Alipui, N ;
Snow, RW .
LANCET, 2003, 361 (9370) :1705-1706
[9]   Distribution of members of Anopheles quadrimaculatus Say s.l. (Diptera: Culicidae) and implications for their roles in malaria transmission in the United States [J].
Levine, RS ;
Peterson, AT ;
Benedict, MQ .
JOURNAL OF MEDICAL ENTOMOLOGY, 2004, 41 (04) :607-613
[10]   Early warning of malaria epidemics in African highlands using Anopheles (Diptera: Culicidae) indoor resting density [J].
Lindblade, KA ;
Walker, ED ;
Wilson, ML .
JOURNAL OF MEDICAL ENTOMOLOGY, 2000, 37 (05) :664-674