Low molecular weight dextrans stabilize nonviral vectors during lyophilization at low osmolalities: Concentrating suspensions by rehydration to reduced volumes

被引:35
作者
Anchordoquy, TJ [1 ]
Armstrong, TK [1 ]
Molina, MD [1 ]
机构
[1] Univ Colorado, Sch Pharm, Denver, CO 80262 USA
关键词
nonviral vector; gene delivery; lyophilization; freezing; stabilization; formulation; freeze-drying;
D O I
10.1002/jps.20353
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Stabilization of nonviral vectors during freezing and drying requires formulation with protective excipients such that transfection rates and physical characteristics are maintained upon reconstitution. While many studies have demonstrated the ability of disaccharides (e.g., sucrose) to effectively protect nonviral vectors during lyophilization, the sucrose/DNA weight ratios required to achieve stability result in formulations that are not osmotically compatible with the subcutaneous (SC) or intramuscular (IM) injection of a typical dose of plasmid DNA. In an effort to reduce the formulation osmolality, dextrans possessing a range of molecular weights were investigated for their ability to serve as protectants. Dextran 3000 proved to be the most effective of the dextrans tested, and offered similar protection to sucrose on a weight basis. However, the advantage of employing this excipient is that the resulting osmolality is reduced by approximately 40% as compared to an equivalent weight of sucrose. Moreover, the use of dextran allows lyophilized vector preparations to be rehydrated to reduced volumes, essentially concentrating vectors prior to administration. Utilizing a combination of dextran 3000 and sucrose, we demonstrate that complexes of polyethylenimine (PEI) and DNA lyophilized at 0.1 mg/mL can be concentrated tenfold upon rehydration, resulting in an isotonic formulation containing 1 mg/mL DNA that can provide more realistic injection volumes for animal studies, and is compatible with clinical trials involving SC and IM injection. (C) 2005 Wiley-Liss, Inc. and the American Pharmacists Association.
引用
收藏
页码:1226 / 1236
页数:11
相关论文
共 42 条
[1]  
Allison SD, 2000, J PHARM SCI, V89, P682, DOI 10.1002/(SICI)1520-6017(200005)89:5<682::AID-JPS14>3.3.CO
[2]  
2-R
[3]   Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis [J].
Allison, SD ;
Molina, MDC ;
Anchordoquy, TJ .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1468 (1-2) :127-138
[4]  
Anchordoquy TJ, 2000, J PHARM SCI, V89, P289, DOI 10.1002/(SICI)1520-6017(200003)89:3<289::AID-JPS1>3.3.CO
[5]  
2-E
[6]   Stability of lipid/DNA complexes during agitation and freeze-thawing [J].
Anchordoquy, TJ ;
Girouard, LG ;
Carpenter, JF ;
Kroll, DJ .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1998, 87 (09) :1046-1051
[7]   Maintenance of transfection rates and physical characterization of lipid/DNA complexes after freeze-drying and rehydration [J].
Anchordoquy, TJ ;
Carpenter, JF ;
Kroll, DJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1997, 348 (01) :199-206
[8]  
ANCHORDOQUY TJ, 2004, LYOPHILIZATION BIOMA, V1
[9]   Immobilization of nonviral vectors during the freezing step of lyophilization [J].
Armstrong, TK ;
Anchordoquy, TJ .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2004, 93 (11) :2698-2709
[10]   Surface-induced denaturation of proteins during freezing and its inhibition by surfactants [J].
Chang, BS ;
Kendrick, BS ;
Carpenter, JF .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1996, 85 (12) :1325-1330