Volumetric segmentation using Weibull E-SD fields

被引:11
作者
Hu, JX [1 ]
Razdan, A
Nielson, GM
Farin, GE
Baluch, DP
Capco, DG
机构
[1] Arizona State Univ, Partnership Res Stereo Modeling, Tempe, AZ 85287 USA
[2] Arizona State Univ, Dept Comp Sci, Tempe, AZ 85287 USA
[3] Arizona State Univ, Dept Biol, Tempe, AZ 85287 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
3D segmentation; Weibull E-SD field; noise index; confocal laser scanning microscope; CLSM;
D O I
10.1109/TVCG.2003.1207440
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a coarse-grain approach for segmentation of objects with gray levels appearing in volume data. The input data is on a 3D structured grid of vertices v(i, j, k), each associated with a scalar value. In this paper, we consider a voxel as a kappa x kappa x kappa, cube and each voxel is assigned two values: expectancy and standard deviation (E-SD). We use the Weibull noise index to estimate the noise in a voxel and to obtain more precise E-SD values for each voxel. We plot the frequency of voxels which have the same E-SD, then 3D segmentation based on the Weibull E-SD field is presented. Our test bed includes synthetic data as well as real volume data from a confocal laser scanning microscope (CLSM). Analysis of these data all show distinct and defining regions in their E-SD fields. Under the guide of the E-SD field, we can efficiently segment the objects embedded in real and simulated 3D data.
引用
收藏
页码:320 / 328
页数:9
相关论文
共 23 条
[1]  
Andrews L C, 1998, SPIE, V2nd
[2]   COMPUTATION OF SURFACE GEOMETRY AND SEGMENTATION USING COVARIANCE TECHNIQUES [J].
BERKMANN, J ;
CAELLI, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (11) :1114-1116
[3]   Game-theoretic integration for image segmentation [J].
Chakraborty, A ;
Duncan, JS .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (01) :12-30
[4]   A MODIFIED SCHEME FOR SEGMENTING THE NOISY IMAGES [J].
CHANDA, B ;
CHAUDHURI, BB ;
MAJUMDER, DD .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1988, 18 (03) :458-466
[5]   Statistical region snake-based segmentation adapted to different physical noise models [J].
Chesnaud, C ;
Réfrégier, P ;
Boulet, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (11) :1145-1157
[6]   Wall position and thickness estimation from sequences of echocardiographic images [J].
Dias, JMB ;
Leitao, JMN .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1996, 15 (01) :25-38
[7]  
FOX MH, 1991, J CELL SCI, V99, P247
[8]  
FUNG PW, 1988, P IEEE C AC SPEECH S, P882
[10]   Relaxation methods for supervised image segmentation [J].
Hansen, MW ;
Higgins, WE .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (09) :949-962