Regularized total least squares based on quadratic eigenvalue problem solvers

被引:92
作者
Sima, DM
Van Huffel, S
Golub, GH
机构
[1] Katholieke Univ Leuven, ESAT, SISTA, B-3001 Louvain, Belgium
[2] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
quadratic eigenvalue problem; regularization; Total Least Squares;
D O I
10.1007/s10543-004-6024-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total Least Squares problem based on quadratic eigenvalue problems is presented. Discrete ill-posed problems are used as simulation examples in order to numerically validate the method.
引用
收藏
页码:793 / 812
页数:20
相关论文
共 35 条
[1]  
[Anonymous], 1991, MATH COMPUT
[2]  
[Anonymous], 1997, ARPACK Users' Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, DOI 10.1137/1.9780898719628
[3]   Lanczos-based exponential filtering for discrete ill-posed problems [J].
Calvetti, D ;
Reichel, L .
NUMERICAL ALGORITHMS, 2002, 29 (1-3) :45-65
[4]   Sparse linear algebra and geophysical migration: A review of direct and iterative methods [J].
De Roeck, YH .
NUMERICAL ALGORITHMS, 2002, 29 (04) :283-322
[5]   Regularization by truncated total least squares [J].
Fierro, RD ;
Golub, GH ;
Hansen, PC ;
OLeary, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (04) :1223-1241
[6]  
GANDER W, 1981, NUMER MATH, V36, P291, DOI 10.1007/BF01396656
[7]   A CONSTRAINED EIGENVALUE PROBLEM [J].
GANDER, W ;
GOLUB, GH ;
VONMATT, U .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :815-839
[8]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[9]  
Golub GH, 1997, SIAM PROC S, P139
[10]   AN ANALYSIS OF THE TOTAL LEAST-SQUARES PROBLEM [J].
GOLUB, GH ;
VANLOAN, CF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (06) :883-893