Disulfide bonds convert small heat shock protein Hsp16.3 from a chaperone to a non-chaperone: implications for the evolution of cysteine in molecular chaperones

被引:26
作者
Fu, XM
Li, W
Mao, QL
Chang, ZY [1 ]
机构
[1] Tsing Hua Univ, Prot Sci Lab MOE, Beijing 100084, Peoples R China
[2] Tsing Hua Univ, Dept Biol Sci & Biotechnol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
molecular chaperone; small heat shock protein; cysteine; disulfide bond; conformational flexibility; protein evolution;
D O I
10.1016/S0006-291X(03)01450-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular chaperones mainly function in assisting newly synthesized polypeptide folding and protect non-native proteins from aggregation. with known structural features such as the ability of spontaneous folding/refolding and high conformational flexibility. In this report, we verified the assumption that the lack of disulfide bonds in molecular chaperones is a prerequisite for such unique structural features. Using small heat shock protein (one sub-class of chaperones) Hsp16.3 as a model system, our results show the following: (1) Cysteine-free Hsp16.3 wild type protein can efficiently exhibit chaperone activity and spontaneously refold/reassemble with high conformational flexibility. (2) Whereas Hsp16.3 G89C mutant with inter-subunit disulfide bonds formed seems to lose the nature of chaperone proteins, i.e., under stress conditions, it neither acts as molecular chaperone nor spontaneously refolds/reassembles. Structural analysis indicated that the mutant exists as an unstable molten globule-like state, which incorrectly exposes hydrophobic surfaces and irreversibly tends to form aggregates that can be suppressed by the other molecular chaperone (alpha-crystallin). By contrast, reduction of disulfide bond in the Hsp16.3 G89C mutant can significantly recover its character as a molecular chaperone. In light of these results, we propose that disulfide bonds could severely disturb the structure/function of molecular chaperones like Hsp16.3. Our results might not only provide insights into understanding the structural basis of chaperone upon binding substrates, but also explain the observation that the occurrence of cysteine in molecular chaperones is much lower than that in other protein families, subsequently being helpful to understand the evolution of protein family. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:627 / 635
页数:9
相关论文
共 36 条
[1]  
ALLEN G, 1997, PROTEIN COMPREHENSIV, V2, P256
[2]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[3]   Structural plasticity and noncovalent substrate binding in the GroEL apical domain - A study using electrospray ionization mass spectrometry and fluorescence binding studies [J].
Ashcroft, AE ;
Brinker, A ;
Coyle, JE ;
Weber, F ;
Kaiser, M ;
Moroder, L ;
Parsons, MR ;
Jager, J ;
Hartl, UF ;
Hayer-Hartl, M ;
Radford, SE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :33115-33126
[4]   Subunit exchange of small heat shock proteins -: Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations [J].
Bova, MP ;
Mchaourab, HS ;
Han, Y ;
Fung, BKK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (02) :1035-1042
[5]   Purification and characterization of small heat shock proteins [J].
Buchner, J ;
Ehrnsperger, M ;
Gaestel, M ;
Walke, S .
MOLECULAR CHAPERONES, 1998, 290 :339-349
[6]   A structural model for GroEL-polypeptide recognition [J].
Buckle, AM ;
Zahn, R ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3571-3575
[7]   Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation [J].
Chang, ZY ;
Primm, TP ;
Jakana, J ;
Lee, IH ;
Serysheva, I ;
Chiu, W ;
Gilbert, HF ;
Quiocho, FA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (12) :7218-7223
[8]  
Creighton TE, 1993, PROTEINS STRUCTURES
[9]   α-crystallin as a molecular chaperone [J].
Derham, BK ;
Harding, JJ .
PROGRESS IN RETINAL AND EYE RESEARCH, 1999, 18 (04) :463-509
[10]  
Dobson Christopher M., 1999, Current Opinion in Structural Biology, V9, P92, DOI 10.1016/S0959-440X(99)80012-8