On improvements to the analytic center cutting plane method

被引:22
作者
Du Merle, O [1 ]
Goffin, JL
Vial, JP
机构
[1] Univ Geneva, Dept HEC, Geneva, Switzerland
[2] McGill Univ, Fac Management, Gerad, Montreal, PQ, Canada
关键词
D O I
10.1023/A:1018318117350
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we explore a weakness of a specific implementation of the analytic center cutting plane method applied to convex optimization problems, which may lead to weaker results than Kelley's cutting plane method. Improvements to the analytic center cutting plane method are suggested, and tested on some example problems.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 22 条
[1]  
Anderson E., 1992, LAPACK User's Guide
[2]   A CUTTING PLANE ALGORITHM FOR CONVEX-PROGRAMMING THAT USES ANALYTIC CENTERS [J].
ATKINSON, DS ;
VAIDYA, PM .
MATHEMATICAL PROGRAMMING, 1995, 69 (01) :1-43
[3]   EXPERIMENTAL BEHAVIOR OF AN INTERIOR-POINT CUTTING PLANE ALGORITHM FOR CONVEX-PROGRAMMING - AN APPLICATION TO GEOMETRIC-PROGRAMMING [J].
BAHN, O ;
GOFFIN, JL ;
VIAL, JP ;
DUMERLE, O .
DISCRETE APPLIED MATHEMATICS, 1994, 49 (1-3) :3-23
[4]   A CUTTING PLANE METHOD FROM ANALYTIC CENTERS FOR STOCHASTIC-PROGRAMMING [J].
BAHN, O ;
DUMERLE, O ;
GOFFIN, JL ;
VIAL, JP .
MATHEMATICAL PROGRAMMING, 1995, 69 (01) :45-73
[5]  
BENDERS JF, 1962, NUMER MATH, V4, P238, DOI [10.1007/BF01386316, DOI 10.1007/BF01386316, DOI 10.1007/S10287-004-0020-Y]
[6]   THE DECOMPOSITION ALGORITHM FOR LINEAR-PROGRAMS [J].
DANTZIG, GB ;
WOLFE, P .
ECONOMETRICA, 1961, 29 (04) :767-778
[7]   A Polynomial Newton Method for Linear Programming [J].
de Ghellinck, Guy ;
Vial, Jean-Philippe .
ALGORITHMICA, 1986, 1 (1-4) :425-453
[8]  
DUMERLE O, 1995, THESIS U GENEVA SWIT
[9]   2-METRIC PROJECTION METHODS FOR CONSTRAINED OPTIMIZATION [J].
GAFNI, EM ;
BERTSEKAS, DP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (06) :936-964
[10]   ON THE COMPUTATION OF WEIGHTED ANALYTIC CENTERS AND DUAL ELLIPSOIDS WITH THE PROJECTIVE ALGORITHM [J].
GOFFIN, JL ;
VIAL, JP .
MATHEMATICAL PROGRAMMING, 1993, 60 (01) :81-92