Building model analysis applications with the Joint Universal Parameter IdenTification and Evaluation of Reliability (JUPITER) API

被引:16
作者
Banta, Edward R. [2 ]
Hill, Mary C. [1 ]
Poeter, Eileen [3 ,4 ]
Doherty, John E. [5 ]
Babendreler, Justin [6 ]
机构
[1] USGS, Boulder, CO 80303 USA
[2] US Geol Survey, Lakewood, CO 80225 USA
[3] Colorado Sch Mines, Golden, CO 80401 USA
[4] Int Ground Water Modeling Ctr, Golden, CO 80401 USA
[5] Univ Queensland, St Lucia, Qld 4067, Australia
[6] US EPA, Ecosyst Res Div, Natl Exposure Res Lab, Athens, GA 30605 USA
关键词
sensitivity; uncertainty; calibration; optimization; model discrimination;
D O I
10.1016/j.cageo.2007.03.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input and output conventions allow application users to access various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate, for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity analysis. data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas. Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example. Published by Elsevier Ltd.
引用
收藏
页码:310 / 319
页数:10
相关论文
共 25 条
[1]  
AHLFELD DP, 2000, OPTIMALK MANAGEMENT
[2]  
[Anonymous], TM6E3 US GEOL SURV
[3]  
[Anonymous], 1998, Applied regression analysis, DOI 10.1002/9781118625590
[4]  
[Anonymous], 984080 US GEOL SURV
[5]  
Aster R. C., 2005, PARAMETER ESTIMATION
[6]  
BABENDREIER JE, 2004, P INT WORKSH UNC SEN, pA1
[7]  
BANTA ER, 2006, 06E1 TM US GEOL SURV
[8]  
Burnham K.P., 2002, Model selection and multimodel inference: a practical information-theoretic approach, DOI 10.1007/978-1-4757-2917-7_3
[9]  
Cook D.R., 1999, APPL REGRESSION INCL
[10]  
Cook R. D., 1982, Residuals and influence in regression