NMR structure of an archaeal homologue of ribonuclease P protein Rpp29

被引:25
作者
Sidote, DJ [1 ]
Hoffman, DW [1 ]
机构
[1] Univ Texas, Dept Chem & Biochem, Inst Cellular & Mol Biol, Austin, TX 78712 USA
关键词
D O I
10.1021/bi030170z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A protein component of the Archaeoglobus fulgidus RNase P was expressed in Escherichia coli, purified, and structurally characterized using multidimensional NMR methods. The dominant structural feature of this 11 kDa protein is a sheet of six antiparallel beta-strands, wrapped around a core of conserved hydrophobic amino acids. Amide proton exchange and N-15 relaxation rate data provide evidence that the first 16 residues of the protein, located before the start of the first P-strand, and the last 24 residues, located past the end of the last P-strand, are relatively flexible; this contrasts with the relatively rigid and well-defined structure of the P-sheet. Amino acid sequence comparisons among a diverse set of species indicate that the A. fulgidus protein is homologous to the human RNase P protein Rpp29, yeast RNase P protein Pop4, and a known archaeal RNase P protein from Methanobacter thermoautotrophicus; conserved hydrophobic residues indicate that the homologous protein in each of these species contains a similar P-sheet structure. Conserved surface residues located in the loop connecting strands beta2 and beta3, the loop connecting strands beta4 and beta5, and in the flexible N- and C-terminal tails are most likely to have specific interactions with the RNA and other proteins of RNase P. The structural model of an RNase P protein component provided by the present work provides an essential step toward eventually understanding the overall architecture of this complex enzyme and the mechanism by which it performs its functions.
引用
收藏
页码:13541 / 13550
页数:10
相关论文
共 55 条
[1]  
Altman S., 1999, Cold Spring Harbor Monograph Archive, V37, P351
[2]   Dimeric and monomeric Bacillus subtilis RNase P holoenzyme in the absence and presence of pre-tRNA substrates [J].
Barrera, A ;
Fang, XW ;
Jacob, J ;
Casey, E ;
Thiyagarajan, P ;
Pan, T .
BIOCHEMISTRY, 2002, 41 (43) :12986-12994
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold [J].
Bycroft, M ;
Hubbard, TJP ;
Proctor, M ;
Freund, SMV ;
Murzin, AG .
CELL, 1997, 88 (02) :235-242
[5]  
Cai T, 2002, GENETICS, V161, P1029
[6]   RIBBONS 2 0 [J].
CARSON, M .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :958-&
[7]   Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP [J].
Chamberlain, JR ;
Lee, Y ;
Lane, WS ;
Engelke, DR .
GENES & DEVELOPMENT, 1998, 12 (11) :1678-1690
[8]   THE RNA OF RNASE MRP IS REQUIRED FOR NORMAL PROCESSING OF RIBOSOMAL-RNA [J].
CHU, S ;
ARCHER, RH ;
ZENGEL, JM ;
LINDAHL, L .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (02) :659-663
[9]   The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leader sequence of pre-tRNAAsp [J].
Crary, SM ;
Niranjanakumari, S ;
Fierke, CA .
BIOCHEMISTRY, 1998, 37 (26) :9409-9416
[10]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293