Two-machine open shop scheduling with an availability constraint

被引:27
作者
Breit, J [1 ]
Schmidt, G
Strusevich, VA
机构
[1] Univ Saarland, Dept Informat & Technol Management, D-66041 Saarbrucken, Germany
[2] Tech Univ Clausthal, Inst Informat, D-38678 Clausthal Zellerfeld, Germany
[3] Univ Greenwich, Sch Comp & Math Sci, London SE10 9LS, England
关键词
open shop scheduling; availability constraints; worst-case analysis;
D O I
10.1016/S0167-6377(01)00079-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a two-machine open shop scheduling problem, in which one machine is not available for processing during a given time interval. The objective is to minimize the makespan. We show that the problem is NP-hard and present an approximation algorithm with a worst-case ratio of 4/3. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:65 / 77
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
BREIT J, 2000, THESIS U SAARLAND
[3]  
BREIT J, 2000, B2001 U SAARL DEP EC
[4]   Two-machine flowshop scheduling with consecutive availability constraints [J].
Cheng, TCE ;
Wang, GQ .
INFORMATION PROCESSING LETTERS, 1999, 71 (02) :49-54
[5]   PREEMPTIVE SCHEDULING OF INDEPENDENT JOBS WITH RELEASE AND DUE TIMES ON OPEN, FLOW AND JOB SHOPS [J].
CHO, Y ;
SAHNI, S .
OPERATIONS RESEARCH, 1981, 29 (03) :511-522
[6]  
GONZALEZ T, 1976, J ACM, V23, P665, DOI 10.1145/321978.321985
[7]  
Johnson Selmer Martin., 1954, NAV RES LOG, V1, P61, DOI [10.1002/nav.3800010110, DOI 10.1002/NAV.3800010110, 10.1002/(ISSN)1931-9193]
[8]  
KUBIAK W, 1997, IN PRESS EUROPEAN J
[9]  
Lawler E.L, 1993, HDB OPERATIONS RES M, V4, P445, DOI 10.1016/S0927-0507(05)80189-6
[10]   PREEMPTIVE SCHEDULING OF UNRELATED PARALLEL PROCESSORS BY LINEAR-PROGRAMMING [J].
LAWLER, EL ;
LABETOULLE, J .
JOURNAL OF THE ACM, 1978, 25 (04) :612-619