Fractional diffusion in inhomogeneous media

被引:248
作者
Chechkin, AV
Gorenflo, R
Sokolov, IM
机构
[1] Kharkov Phys & Technol Inst, Ctr Nat Sci, Inst Theoret Phys, UA-61108 Kharkov, Ukraine
[2] Free Univ Berlin, Dept Math & Informat, D-14195 Berlin, Germany
[3] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 42期
关键词
D O I
10.1088/0305-4470/38/42/L03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting from the continuous time random walk (CTRW) scheme with the space-dependent waiting-time probability density function (PDF) we obtain the time-fractional diffusion equation with varying in space fractional order of time derivative. As an example, we study the evolution of a composite system consisting of two separate regions with different subdiffusion exponents and demonstrate the effects of non-trivial drift and subdiffusion whose laws are changed in the course of time.
引用
收藏
页码:L679 / L684
页数:6
相关论文
共 21 条
[1]  
Ayache Antoine., 2000, STAT INFER STOCH PRO, V3, P7, DOI [DOI 10.1023/A:1009901714819, 10.1023/A:1009901714819]
[2]   Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations [J].
Berkowitz, B ;
Klafter, J ;
Metzler, R ;
Scher, H .
WATER RESOURCES RESEARCH, 2002, 38 (10)
[3]   NON-MARKOV THEORY OF SUDDEN MODULATION [J].
BURSHTEIN, AI ;
ZHARIKOV, AA ;
TEMKIN, SI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 66 (02) :166-173
[4]   Dynamics under the influence of semi-Markov noise [J].
Chvosta, P ;
Reineker, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 268 (1-2) :103-120
[5]  
Feller W., 1971, An introduction to probability theory and its applications, VII
[6]  
Gorenflo R., 1997, FRACTAL FRACT, V378, P223, DOI DOI 10.1007/978-3-7091-2664-6_5
[7]  
Goychuk I, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016109
[8]   Strange kinetics - Preface [J].
Hilfer, R ;
Metzler, R ;
Blumen, A ;
Klafter, J .
CHEMICAL PHYSICS, 2002, 284 (1-2) :1-2
[9]  
Hilfer R., 2000, Fractional Calculus and Regular Variation in Thermodynamics
[10]   DERIVATION OF THE CONTINUOUS-TIME RANDOM-WALK EQUATION [J].
KLAFTER, J ;
SILBEY, R .
PHYSICAL REVIEW LETTERS, 1980, 44 (02) :55-58