Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis

被引:68
作者
Harris, CT [1 ]
Cooper, LF [1 ]
机构
[1] Univ N Carolina, Sch Dent, Bone Biol & Implant Therapy Lab, Chapel Hill, NC 27599 USA
关键词
human mesenchymal stem cell; osteogenesis; hydroxyapatite; tricalcium phosphate; coralline hydroxyapatite;
D O I
10.1002/jbm.a.20107
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Bone tissue engineering requires materials that are biocompatible, well vascularized, mechanically suited for bone function integrated with the host skeleton, and support osteoinduciion of the implanted cells that form new bone. The aim of this study was to compare the osteogenic potential of bone marrow-derived, culture expanded human mesenchymal stem cells (hMSCs) adherent to different scaffolds composed of various calcium phosphates. Cells were loaded onto 2 x 2 mm cubes of coral calcium carbonate-derived apatite, bovine bone-derived apatite, synthetic hydroxyapatite (HA)/tricalcium phosphate (TCP) (60:40%), or synthetic HA/TCP (20:80%) and placed into the dorsum of SCID mice for 5 weeks. Subsequent histomorphometric analysis of bone formation within the cubes revealed the absence of bone formation within the coral-derived apatite and the bovine bone-derived apatite. Bone formation within synthetic HA/TCP scaffolds was measured to be 8.8% (+/-2.7%) and 13.8% (+/-3.6%) of the total tissue present for the 60:40% and 20:80% materials, respectively. Minimal resorption was observed at this early time point. Scanning electron microscopy evaluation of loaded scaffolds indicates that cell loading was not a variable affecting the different bone formation outcomes in these four scaffolds. In this ectopic model, different apatite-containing scaffolds of similar morphology and porosity demonstrated marked differences in their ability to support osteoinduction by implanted hMSCs. The necessary induction of hMSCs along the osteoblastic lineage may be dependent, in part, on the local microenvironment established by the scaffold chemistry and interactions with the host. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:747 / 755
页数:9
相关论文
共 53 条
[1]   Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans [J].
Ayers, RA ;
Simske, SJ ;
Nunes, CR ;
Wolford, LM .
JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 1998, 56 (11) :1297-1301
[2]   Use of bovine-derived anorganic bone associated with guided tissue regeneration in intrabony defects.: Six-month evaluation at re-entry [J].
Batista, EL ;
Novaes, AB ;
Simonpietri, JJ ;
Batista, FC .
JOURNAL OF PERIODONTOLOGY, 1999, 70 (09) :1000-1007
[3]   Microenvironment and stem properties of bone marrow-derived mesenchymal cells [J].
Bianchi, G ;
Muraglia, A ;
Daga, A ;
Corte, G ;
Cancedda, R ;
Quarto, R .
WOUND REPAIR AND REGENERATION, 2001, 9 (06) :460-466
[4]  
BOZZOLA J, 1998, ELECT MICROSCOPY PRI, P323
[5]   MESENCHYMAL STEM-CELLS IN IN BONE-DEVELOPMENT, BONE REPAIR, AND SKELETAL REGENERATION THERAPY [J].
BRUDER, SP ;
FINK, DJ ;
CAPLAN, AI .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 56 (03) :283-294
[6]  
CAPLAN AI, 1990, BIOMATERIALS, V11, P44
[7]   Mesenchymal stem cells: building blocks for molecular medicine in the 21st century [J].
Caplan, AI ;
Bruder, SP .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (06) :259-264
[8]   Guided bone regeneration around endosseous implants with anorganic bovine bone mineral. A randomized controlled trial comparing bioabsorbable versus non-resorbable barriers [J].
Carpio, L ;
Loza, J ;
Lynch, S ;
Genco, R .
JOURNAL OF PERIODONTOLOGY, 2000, 71 (11) :1743-1749
[9]   Incipient analysis of mesenchymal stem-cell-derived osteogenesis [J].
Cooper, LF ;
Harris, CT ;
Bruder, SP ;
Kowalski, R ;
Kadiyala, S .
JOURNAL OF DENTAL RESEARCH, 2001, 80 (01) :314-320
[10]  
Cornell CN, 1998, CLIN ORTHOP S, V355, P267