Links between Phytoplankton and bacterial community dynamics in a coastal marine environment

被引:246
作者
Rooney-Varga, JN [1 ]
Giewat, MW
Savin, MC
Sood, S
LeGresley, M
Martin, JL
机构
[1] Univ Massachusetts, Ctr Complex Environm Syst, Lowell, MA 01854 USA
[2] Univ Arkansas, Dept Crop Soil & Environm Sci, Fayetteville, AR 72701 USA
[3] Fisheries & Oceans Canada, St Andrews, NB, Canada
关键词
D O I
10.1007/s00248-003-1057-0
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Bacteria and phytoplankton dynamics are thought to be closely linked in coastal marine environments, with correlations frequently observed between bacterial and phytoplankton biomass. In contrast, little is known about how these communities interact with each other at the species composition level. The purpose of the current study was to analyze bacterial community dynamics in a productive, coastal ecosystem and to determine whether they were related to phytoplankton community dynamics. Near-surface seawater samples were collected in February, May, July, and September 2000 from several stations in the Bay of Fundy. Savin et al. (M.C. Savin et al., Microb Ecol 48: 51-65) analyzed the phytoplankton community in simultaneously collected samples. The attached and free-living bacterial communities were collected by successive filtration onto 5 mu m and 0.22 mu m pore-size filters, respectively. DNA was extracted from filters and bacterial 16S rRNA gene fragments were amplified and analyzed by denaturing gradient gel electrophoresis (DGGE). DGGE revealed that diversity and temporal variability were lower in the free-living than the attached bacterial community. Both attached and free-living communities were dominated by members of the Roseobacter and Cytophaga groups. Correspondence analysis (CA) ordination diagrams showed similar patterns for the phytoplankton and attached bacterial communities, indicating that shifts in the species composition of these communities were linked. Similarly, canonical CA revealed that the diversity, abundance, and percentage of diatoms in the phytoplankton community accounted for a significant amount of the variability in the attached bacterial community composition. In contrast, ordination analyses did not reveal an association between free-living bacteria and phytoplankton. These results suggest that there are specific interactions between phytoplankton and the bacteria attached to them, and that these interactions influence the composition of both communities.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 50 条
[1]  
Acinas SG, 1999, APPL ENVIRON MICROB, V65, P514
[2]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[3]   Molecular and ecological evidence for species specificity and coevolution in a group of marine algal-bacterial symbioses [J].
Ashen, JB ;
Goff, LJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (07) :3024-3030
[4]   PHYTOPLANKTON-BACTERIA INTERACTIONS - AN APPARENT PARADOX - ANALYSIS OF A MODEL SYSTEM WITH BOTH COMPETITION AND COMMENSALISM [J].
BRATBAK, G ;
THINGSTAD, TF .
MARINE ECOLOGY PROGRESS SERIES, 1985, 25 (01) :23-30
[5]   BACTERIAL PRODUCTION IN FRESH AND SALTWATER ECOSYSTEMS - A CROSS-SYSTEM OVERVIEW [J].
COLE, JJ ;
FINDLAY, S ;
PACE, ML .
MARINE ECOLOGY PROGRESS SERIES, 1988, 43 (1-2) :1-10
[6]   Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes [J].
Dang, HY ;
Lovell, CR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (02) :467-475
[7]   Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing [J].
Díez, B ;
Pedrós-Alió, C ;
Massana, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :2932-2941
[8]   Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques [J].
Díez, B ;
Pedrós-Alió, C ;
Marsh, TL ;
Massana, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :2942-2951
[9]  
Doucette Gregory J., 1995, Natural Toxins, V3, P65, DOI 10.1002/nt.2620030202
[10]   Culturability and in situ abundance of pelagic bacteria from the North Sea [J].
Eilers, H ;
Pernthaler, J ;
Glöckner, FO ;
Amann, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (07) :3044-3051