In the bacterial cytosol, degradation of ssrA-tagged proteins is primarily carried out by the proteolytic machine ClpXP in a process which is stimulated by a ClpX-specific adaptor protein, SspB. Here we elucidate the steps required for binding and transfer of ssrA-tagged substrates from SspB to ClpX. The N-terminal region of SspB is essential for its interaction with ssrA-tagged substrates, while a short conserved region at the C terminus of SspB interacts specifically with the N domain of ClpX. A single point mutation within the conserved C-terminal region of SspB is sufficient to abolish the SspB-mediated degradation of ssrA-tagged proteins by ClpXP. We propose that this region represents a common motif for the recognition of ClpX as the C-terminal region of SspB shares considerable homology with the other ClpX-specific adaptor protein, RssB. Through docking of SspB to the N-terminal domain of ClpX, the substrate is delivered to the substrate binding site in ClpX.