Morphology Control in Organic Solar Cells

被引:519
作者
Zhao, Fuwen [1 ,2 ]
Wang, Chunru [2 ]
Zhan, Xiaowei [1 ]
机构
[1] Peking Univ, Dept Mat Sci & Engn, Coll Engn, Key Lab Polymer Chem & Phys,Minist Educ, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
morphology characterization; morphology control; organic solar cells; POWER CONVERSION EFFICIENCY; PCDTBTPC70BM BULK HETEROJUNCTION; NANOSCALE PHASE-SEPARATION; ACTIVE LAYER MORPHOLOGY; SHORT-CIRCUIT CURRENT; HIGH-PERFORMANCE; CONJUGATED POLYMER; MOLECULAR-WEIGHT; IN-SITU; NONFULLERENE ACCEPTORS;
D O I
10.1002/aenm.201703147
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Organic solar cells (OSCs) can directly convert the sunlight into electrical energy and present some advantages, such as low cost, light weight, flexibility, semitransparency, and roll-to-roll large-area fabrication. Due to the short diffusion length of exciton (approximate to 10 nm) in organic semiconductor materials, the ideal nanoscale phase separation in the active layer is one of the crucial factors for achieving efficient exciton dissociation and charge transport. The morphology of the active layer is mainly determined by the nature of donors and acceptors (e.g., solubility, crystallinity, and miscibility), the film processing, the device configuration, and so on. In general, it is very hard to obtain ideal morphology in the as-cast films. Therefore, it is usually essential to take measures to achieve the active layer with good molecular stacking, proper domain size, high domain purity, and suitable vertical phase separation. In this review, recent developments in morphology control and morphology characterization are summarized and analyzed. This review might help the community to decipher active layer morphology at multiple length scales and to achieve ideal morphology toward high-performance OSCs.
引用
收藏
页数:34
相关论文
共 272 条
[1]   Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy [J].
Alexeev, A ;
Loos, J ;
Koetse, MM .
ULTRAMICROSCOPY, 2006, 106 (03) :191-199
[2]   High-performance alloy model-based ternary small molecule solar cells [J].
An, Qiaoshi ;
Zhang, Fujun ;
Yin, Xinxing ;
Sun, Qianqian ;
Zhang, Miao ;
Zhang, Jian ;
Tang, Weihua ;
Deng, Zhenbo .
NANO ENERGY, 2016, 30 :276-282
[3]   Efficient organic ternary solar cells with the third component as energy acceptor [J].
An, Qiaoshi ;
Zhang, Fujun ;
Sun, Qianqian ;
Zhang, Miao ;
Zhang, Jian ;
Tang, Weihua ;
Yin, Xinxing ;
Deng, Zhenbo .
NANO ENERGY, 2016, 26 :180-191
[4]   Efficient small molecular ternary solar cells by synergistically optimized photon harvesting and phase separation [J].
An, Qiaoshi ;
Zhang, Fujun ;
Sun, Qianqian ;
Wang, Jian ;
Li, Lingliang ;
Zhang, Jian ;
Tang, Weihua ;
Deng, Zhenbo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (32) :16653-16662
[5]   Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolyl-methylenemalononitrile for polymer solar cells [J].
Bai, Huitao ;
Wu, Yao ;
Wang, Yifan ;
Wu, Yang ;
Li, Rong ;
Cheng, Pei ;
Zhang, Mingyu ;
Wang, Jiayu ;
Ma, Wei ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20758-20766
[6]   Controlling Solution-Phase Polymer Aggregation with Molecular Weight and Solvent Additives to Optimize Polymer-Fullerene Bulk Heterojunction Solar Cells [J].
Bartelt, Jonathan A. ;
Douglas, Jessica D. ;
Mateker, William R. ;
El Labban, Abdulrahman ;
Tassone, Christopher J. ;
Toney, Michael F. ;
Frechet, Jean M. J. ;
Beaujuge, Pierre M. ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2014, 4 (09)
[7]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[8]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[9]   Influence of blend microstructure on bulk heterojunction organic photovoltaic performance [J].
Brabec, Christoph J. ;
Heeney, Martin ;
McCulloch, Iain ;
Nelson, Jenny .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (03) :1185-1199
[10]   Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes [J].
Buchaca-Domingo, E. ;
Ferguson, A. J. ;
Jamieson, F. C. ;
McCarthy-Ward, T. ;
Shoaee, S. ;
Tumbleston, J. R. ;
Reid, O. G. ;
Yu, L. ;
Madec, M. -B. ;
Pfannmoeller, M. ;
Hermerschmidt, F. ;
Schroeder, R. R. ;
Watkins, S. E. ;
Kopidakis, N. ;
Portale, G. ;
Amassian, A. ;
Heeney, M. ;
Ade, H. ;
Rumbles, G. ;
Durrant, J. R. ;
Stingelin, N. .
MATERIALS HORIZONS, 2014, 1 (02) :270-279