WOx/ZrO2 catalysts prepared by anionic exchange:: In situ Raman investigation from the precursor solutions to the calcined catalysts

被引:41
作者
Loridant, S [1 ]
Feche, C [1 ]
Essayem, N [1 ]
Figueras, F [1 ]
机构
[1] Inst Rech Catalyse, CNRS, UPR 5401, F-69626 Villeurbanne, France
关键词
D O I
10.1021/jp044494o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
W/ZrO2 catalysts were prepared using anionic exchange of peroxotungstate species with hydroxyl groups of zirconium hydroxide at low pH. The solids were dried and calcined under air at 700 degrees C. Each step of this novel method of preparation was investigated by Raman spectroscopy. A reference sample was also prepared by incipient wetness impregnation of ZrO2-n(H2O) with an ammonium tungstate solution and characterized throughout its preparation process. Complementary data were collected from X-ray diffraction, chemical analysis, surface area measurements, and thermal analysis. The Raman spectra of the H2WO4-H2O2 precursor solutions evidenced the presence Of (W2O3(O-2)(4)(H2O)(2))(2-) dimers. These low-nuclearity species were exchanged with zirconium hydroxide at low pH. The Raman spectra of the dried solids did not reveal peroxotungstate species but were typical of tetrahedral (WO4)(2-) species. A slight agglomeration of W species was observed with an increase in the W content. However, for an equivalent W loading, a higher W dispersion was obtained by anionic exchange, compared to the impregnation method. Furthermore, a remarkable homogeneity of the exchanged samples was evidenced by the micro-Raman spectra. The in situ Raman spectra recorded during calcination characterized both crystalline phases and supported tungsten species. Significant modifications were observed during the calcination process. The exchanged and the impregnated samples, with the same W loading, evidenced a similar type of tungsten species with one W = O bond. However, their behavior during calcination up to 700 degrees C was different. This was attributed to different strengths of interaction with the support. Moreover, the spectra recorded after calcination on various points of the exchanged sample with a high W content revealed a better spatial homogeneity than the impregnated one.
引用
收藏
页码:5631 / 5637
页数:7
相关论文
共 43 条
[1]  
ARATA K, 1988, P 9 INT C CAT CALG 1, P1727
[2]   REINVESTIGATION OF EPOXIDATION USING TUNGSTEN-BASED PRECURSORS AND HYDROGEN-PEROXIDE IN A BIPHASE MEDIUM [J].
AUBRY, C ;
CHOTTARD, G ;
PLATZER, N ;
BREGEAULT, JM ;
THOUVENOT, R ;
CHAUVEAU, F ;
HUET, C ;
LEDON, H .
INORGANIC CHEMISTRY, 1991, 30 (23) :4409-4415
[3]   Molecular structures of supported metal oxide catalysts under different environments [J].
Bañares, MA ;
Wachs, IE .
JOURNAL OF RAMAN SPECTROSCOPY, 2002, 33 (05) :359-380
[4]   Solid acid catalysts based on supported tungsten oxides [J].
Barton, DG ;
Soled, SL ;
Iglesia, E .
TOPICS IN CATALYSIS, 1998, 6 (1-4) :87-99
[5]   Structure and electronic properties of solid acids based on tungsten oxide nanostructures [J].
Barton, DG ;
Shtein, M ;
Wilson, RD ;
Soled, SL ;
Iglesia, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04) :630-640
[6]   Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide [J].
Barton, DG ;
Soled, SL ;
Meitzner, GD ;
Fuentes, GA ;
Iglesia, E .
JOURNAL OF CATALYSIS, 1999, 181 (01) :57-72
[7]   Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy [J].
Boulova, M ;
Lucazeau, G .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 167 (02) :425-434
[8]   Tungsten oxide reactivity versus CH4, CO and NO2 molecules studied by Raman spectroscopy [J].
Boulova, M ;
Gaskov, A ;
Lucazeau, G .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 81 (01) :99-106
[9]   A Raman study of the nanocrystallite size effect on the pressure-temperature phase diagram of zirconia grown by zirconium-based alloys oxidation [J].
Bouvier, P ;
Godlewski, J ;
Lucazeau, G .
JOURNAL OF NUCLEAR MATERIALS, 2002, 300 (2-3) :118-126
[10]   Differentiation of mono-oxo and polyoxo and of monomeric and polymeric vanadate, molybdate and tungstate species in metal oxide catalysts by IR and Raman spectroscopy [J].
Busca, G .
JOURNAL OF RAMAN SPECTROSCOPY, 2002, 33 (05) :348-358