Gray codes and 1D quadratic maps

被引:12
作者
Alvarez, G [1 ]
Romera, M [1 ]
Pastor, G [1 ]
Montoya, F [1 ]
机构
[1] Consejo Super Invest Cient, Inst Fis Aplicada, Madrid 28006, Spain
关键词
D O I
10.1049/el:19980950
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors show how the symbolic sequences of same period superstable orbits in 1D quadratic maps are ordered according to Gray codes. Next, the Gray ordering number is introduced, in the interval (0, 1), allowing the simultaneous ordering of symbolic sequences of different period superstable orbits. Likewise, it is shown that Gray ordering number manipulation can determine whether or not a given symbolic sequence exists.
引用
收藏
页码:1304 / 1306
页数:3
相关论文
共 9 条
  • [1] ALVAREZ G, 1998, IN PRESS CHAOS SOLIT
  • [2] Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
  • [3] Goldberg DE, 1989, GENETIC ALGORITHMS S
  • [4] Gray F, 1953, US Patent no
  • [5] HAMBLEY AR, 1990, INTRO COMMUNICATION
  • [6] Horowitz P, 1989, ART ELECT
  • [7] Metropolis N., 1973, Journal of Combinatorial Theory, Series A, V15, P25, DOI 10.1016/0097-3165(73)90033-2
  • [8] Harmonic structure of one-dimensional quadratic maps
    Pastor, G
    Romera, M
    Montoya, F
    [J]. PHYSICAL REVIEW E, 1997, 56 (02): : 1476 - 1483
  • [9] REINGOLD EM, 1977, COMBINATORIAL ALGORI