Transcriptional response of lymphoblastoid cells to ionizing radiation

被引:113
作者
Jen, KY
Cheung, VG [1 ]
机构
[1] Univ Penn, Childrens Hosp Philadelphia, Dept Pediat, Philadelphia, PA 19104 USA
[2] Univ Penn, Childrens Hosp Philadelphia, Dept Genet, Philadelphia, PA 19104 USA
关键词
D O I
10.1101/gr.1240103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of ionizing radiation (IR) on the temporal transcriptional response of lymphoblastoid cells were investigated in this Study. We used oligonucleotide microarrays to assess mRNA levels of genes in lymphoblastoid cells at various time points within 24 h following gamma-irradiation. We identified 319 and 816 IR-responsive genes following 3 Gy and 10 Gy of IR exposure, respectively, with 126 genes in common between the two doses. A high percentage of IR-responsive genes are involved in the control of cell cycle, cell death, DNA repair, DNA metabolism, and RNA processing. We determined the temporal expression profiles of the IR-responsive genes and assessed effects of IR dose on this temporal pattern of expression. By combining dose-response data with temporal profiles of expression, we have identified sets of coordinately responding genes. Through a genomic approach, we characterized a set of genes that are implicated in cellular adaptation to IR stress. These findings will allow a better understanding of complex processes such as radiation-induced carcinogenesis and the development of biomarkers for radiation exposure.
引用
收藏
页码:2092 / 2100
页数:9
相关论文
共 40 条
[1]  
Amundson SA, 2000, RADIAT RES, V154, P342, DOI 10.1667/0033-7587(2000)154[0342:IOPMBI]2.0.CO
[2]  
2
[3]  
Amundson SA, 2003, MOL CANCER RES, V1, P445
[4]   Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses [J].
Amundson, SA ;
Bittner, M ;
Chen, YD ;
Trent, J ;
Meltzer, P ;
Fornace, AJ .
ONCOGENE, 1999, 18 (24) :3666-3672
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase-1 [J].
Asher, G ;
Lotem, J ;
Cohen, B ;
Sachs, L ;
Shaul, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :1188-1193
[7]   ZBP-89 promotes growth arrest through stabilization of p53 [J].
Bai, LG ;
Merchant, JL .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (14) :4670-4683
[8]  
BAST RC, 2000, CANC MED
[9]   Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity [J].
Bulavin, DV ;
Demidov, ON ;
Saito, S ;
Kauraniemi, P ;
Phillips, C ;
Amundson, SA ;
Ambrosino, C ;
Sauter, G ;
Nebreda, AR ;
Anderson, CW ;
Kallioniemi, A ;
Fornace, AJ ;
Appella, E .
NATURE GENETICS, 2002, 31 (02) :210-215
[10]   Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells:: activation of c-Jun NH2-terminal kinase and promoter response element [J].
Cai, Y ;
Zhang, C ;
Nawa, T ;
Aso, T ;
Tanaka, M ;
Oshiro, S ;
Ichijo, H ;
Kitajima, S .
BLOOD, 2000, 96 (06) :2140-2148