An introduction to kernel-based learning algorithms

被引:2442
作者
Müller, KR
Mika, S
Rätsch, G
Tsuda, K
Schölkopf, B
机构
[1] GMD FIRST, D-12489 Berlin, Germany
[2] Univ Potsdam, D-14469 Potsdam, Germany
[3] Electrotech Lab, Tsukuba, Ibaraki 3050031, Japan
[4] Barnhill Technol, Savannah, GA 31406 USA
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 02期
基金
美国国家科学基金会;
关键词
boosting; Fisher's discriminant; kernel methods; kernel PCA; mathematical programming machines; Mercer kernels; principal component analysis (PCA); single-class classification; support vector machines (SVMs);
D O I
10.1109/72.914517
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper provides an introduction to support vector machines (SVMs), kernel Fisher discriminant analysis, and kernel principal component analysis (PCA), as examples for successful kernel-based learning methods, We first give a short background about Vapnik-Chervonenkis (VC) theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by finally discussing applications such as optical character recognition (OCR) and DNA analysis.
引用
收藏
页码:181 / 201
页数:21
相关论文
共 153 条
  • [1] AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
  • [2] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [3] THE ADATRON - AN ADAPTIVE PERCEPTRON ALGORITHM
    ANLAUF, JK
    BIEHL, M
    [J]. EUROPHYSICS LETTERS, 1989, 10 (07): : 687 - 692
  • [4] [Anonymous], 2000, ICML
  • [5] [Anonymous], LNCS, DOI DOI 10.1007/BFB0020283
  • [6] [Anonymous], THEORIE ZEICHENERKEN
  • [7] [Anonymous], 1998, P 15 INT C MACHINE L
  • [8] [Anonymous], 1996, PATTERN CLASSIFICATI
  • [9] Generalized discriminant analysis using a kernel approach
    Baudat, G
    Anouar, FE
    [J]. NEURAL COMPUTATION, 2000, 12 (10) : 2385 - 2404
  • [10] BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504