BAK1 regulates the accumulation of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenuata's responses to herbivory

被引:70
作者
Yang, Da-Hai [1 ]
Hettenhausen, Christian [1 ]
Baldwin, Ian T. [1 ]
Wu, Jianqiang [1 ]
机构
[1] Max Planck Inst Chem Ecol, Dept Mol Ecol, D-07745 Jena, Germany
关键词
BAK1; defence; herbivory; jasmonic acid (JA); jasmonic acid-isoleucine (JA-Ile); Nicotiana attenuata; SERK; trypsin proteinase inhibitor; RICH REPEAT RECEPTOR; DITERPENE GLYCOSIDES; PLANT HORMONES; TOMATO LEAVES; MAP KINASE; ARABIDOPSIS; PERCEPTION; DEFENSE; GROWTH; BRASSINOSTEROIDS;
D O I
10.1093/jxb/erq298
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
BAK1 is a co-receptor of brassinosteroid (BR) receptor BRI1, and plays a well-characterized role in BR signalling. BAK1 also physically interacts with the flagellin receptor FLS2 and regulates pathogen resistance. The role of BAK1 in mediating Nicotiana attenuata's resistance responses to its specialist herbivore, Manduca sexta, was examined here. A virus-induced gene-silencing system was used to generate empty vector (EV) and NaBAK1-silenced plants. The wounding- and herbivory-induced responses were examined on EV and NaBAK1-silenced plants by wounding plants or simulating herbivory by treating wounds with larval oral secretions (OS). After wounding or OS elicitation, NaBAK1-silenced plants showed attenuated jasmonic acid (JA) and JA-isoleucine bursts, phytohormone responses important in mediating plant defences against herbivores. However, these decreased JA and JA-Ile levels did not result from compromised MAPK activity or elevated SA levels. After simulated herbivory, NaBAK1-silenced plants had EV levels of defensive secondary metabolites, namely, trypsin proteinase inhibitors (TPIs), and similar levels of resistance to Manduca sexta larvae. Additional experiments demonstrated that decreased JA levels in NaBAK1-VIGS plants, rather than the enzymatic activity of JAR proteins or Ile levels, were responsible for the reduced JA-Ile levels observed in these plants. Methyl jasmonate application elicited higher levels of TPI activity in NaBAK1-silenced plants than in EV plants, suggesting that silencing NaBAK1 enhances the accumulation of TPIs induced by a given level of JA. Thus NaBAK1 is involved in modulating herbivory-induced JA accumulation and how JA levels are transduced into TPI levels in N. attenuata.
引用
收藏
页码:641 / 652
页数:12
相关论文
共 55 条
[1]   Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and -independent signaling pathways [J].
Albrecht, Catherine ;
Russinova, Eugenia ;
Kemmerling, Birgit ;
Kwaaitaal, Mark ;
de Vries, Sacco C. .
PLANT PHYSIOLOGY, 2008, 148 (01) :611-619
[2]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[3]   Brassinosteroid signaling: A paradigm for steroid hormone signaling from the cell surface [J].
Belkhadir, Youssef ;
Chory, Joanne .
SCIENCE, 2006, 314 (5804) :1410-1411
[4]   Jasmonate Passes Muster: A Receptor and Targets for the Defense Hormone [J].
Browse, John .
ANNUAL REVIEW OF PLANT BIOLOGY, 2009, 60 :183-205
[5]   Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato [J].
Campos, Marcelo Lattarulo ;
de Almeida, Marcilio ;
Rossi, Monica Lanzoni ;
Martinelli, Adriana Pinheiro ;
Litholdo Junior, Celso Gaspar ;
Figueira, Antonio ;
Rampelotti-Ferreira, Fatima Teresinha ;
Vendramim, Jose Djair ;
Benedito, Vagner Augusto ;
Pereira Peres, Lazaro Eustaquio .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (15) :4346-4360
[6]   A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence [J].
Chinchilla, Delphine ;
Zipfel, Cyril ;
Robatzek, Silke ;
Kemmerling, Birgit ;
Nuernberger, Thorsten ;
Jones, Jonathan D. G. ;
Felix, Georg ;
Boller, Thomas .
NATURE, 2007, 448 (7152) :497-U12
[7]   The JAZ family of repressors is the missing link in jasmonate signalling [J].
Chini, Andrea ;
Fonseca, S. ;
Fernandez, G. ;
Adie, B. ;
Chico, J. M. ;
Lorenzo, O. ;
Garcia-Casado, G. ;
Lopez-Vidriero, I. ;
Lozano, F. M. ;
Ponce, M. R. ;
Micol, J. L. ;
Solano, R. .
NATURE, 2007, 448 (7154) :666-+
[8]   Plant hormone receptors: perception is everything [J].
Chow, Brenda ;
McCourt, Peter .
GENES & DEVELOPMENT, 2006, 20 (15) :1998-2008
[9]   SALICYLIC-ACID INHIBITS SYNTHESIS OF PROTEINASE-INHIBITORS IN TOMATO LEAVES INDUCED BY SYSTEMIN AND JASMONIC ACID [J].
DOARES, SH ;
NARVAEZVASQUEZ, J ;
CONCONI, A ;
RYAN, CA .
PLANT PHYSIOLOGY, 1995, 108 (04) :1741-1746
[10]   Multiple mechanisms modulate brassinosteroid signaling [J].
Gendron, Joshua M. ;
Wang, Zhi-Yong .
CURRENT OPINION IN PLANT BIOLOGY, 2007, 10 (05) :436-441